Skip to main content
Log in

Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although conventional Mg alloys develop strong crystallographic textures during deformation that persist during annealing, the addition of rare earth (RE) elements can induce comparably weaker textures. The texture weakening effect is explored using hot-rolled Mg-Y alloys of a single phase to focus on the possibility of solute effects. Of the studied compositions, the richer alloys (≥0.17 at. pct) show the weakening effect, whereas the most dilute alloy (≤0.03 at. pct) does not. Electron backscattered diffraction (EBSD) analysis of intragranular misorientation axes (IGMA) indicate that the geometrically necessary dislocation (GND) content in dilute, hot-rolled alloys contain primarily basal 〈a〉 dislocations. At higher concentrations, the dislocations are predominantly prismatic 〈a〉 type. This change in the GND content suggests a change in dynamic recrystallization (DRX) mode. For example, nonbasal cross slip has been associated with continuous DRX. Furthermore, nonbasal slip might also promote more homogenous shear banding/twinning. Both of these mechanisms have been shown previously to give rise to more randomly oriented nuclei during DRX. Energy dispersive X-ray spectroscopy performed through transmission electron microscopy shows that Mg-Y exhibits significant grain boundary solute segregation, consistent with recent observations of solute clustering. Slow grain growth may be explained by solute drag. It is hypothesized that limited grain boundary mobility suppresses conventional discontinuous DRX, which has been shown to retain the deformation texture. The promotion of nonbasal slip and suppression of grain boundary mobility are proposed as solid solution-based mechanisms responsible for the observed texture weakening phenomenon in Mg rare earth alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It is noted that the alloys examined by Senn and Agnew[12] did contain Zr. It is thus possible that the sparse Zr-containing particles played some role in the texture weakening behavior. However, the volume fraction and number density are low.

  2. It is acknowledged that apart from their motion or association with other portions of a glide loop, the glide plane and, hence, the Taylor axis of pure screw dislocations is arbitrary.

References

  1. H. Friedrich and S. Schumann: J. Mater. Process. Tech., 2001, vol. 117, p. 276.

    Article  CAS  Google Scholar 

  2. X. Huang, K. Suzuki, and N. Saito: Scripta Mater., 2009, vol. 60, p. 651.

    Article  CAS  Google Scholar 

  3. X. Huang, K. Suzuki, and Y. Chino: Scripta Mater., 2010, vol. 63, p. 395.

    Article  CAS  Google Scholar 

  4. X. Gong, S.B. Kang, S. Li, and J.H. Cho: Mater. Des., 2009, vol. 30, p. 3345.

    Article  CAS  Google Scholar 

  5. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito: J. Alloy. Compd., 2009, vol. 470, p. 263.

    Article  CAS  Google Scholar 

  6. Y. Chino and M. Mabuchi: Scripta Mater., 2009, vol. 60, p. 447.

    Article  CAS  Google Scholar 

  7. H. Watanabe and M. Fukusumi: Mater. Sci. Eng. A, 2008, vol. 477, p. 153.

    Article  Google Scholar 

  8. E. Yukutake, J. Kaneko, and M. Sugamata: Mater. Trans., 2003, vol. 44, p. 452.

    Article  CAS  Google Scholar 

  9. G. Mann, J.R. Griffiths, and C.H. Ca′ceres: J. Alloy. Compd., 2004, vol. 378, p. 188.

    Article  CAS  Google Scholar 

  10. S.R. Agnew and O. Duygulu: Int. J. Plast., 2005, vol. 21, p. 1161.

    Article  CAS  Google Scholar 

  11. E.A. Ball and P.B. Prangnell: Scripta Metall. Mater., 1994, vol. 31, p. 111.

    Article  CAS  Google Scholar 

  12. J.W. Senn and S.R. Agnew: Proceedings of Magnesium Technology in the Global Age, M.O. Pekguleryuz and L.W.F. Mackenzie, eds., Montreal, Canada, 2006, p. 115.

  13. J.W. Senn and S.R. Agnew: Magnesium Technology 2008, Proc. TMS, Ed. H.I. Kaplan, TMS, Warrendale, PA, 2008, p. 153.

  14. J.P. Hadorn and S.R. Agnew: Materials Science and Engineering, University of Virginia, Charlottesville, VA, K. Hantzsche, S. Yi, J. Bohlen, and D. Letzig: Magnesium Innovation Center (MagIC), HZG, Geesthacht, Germany, unpublished research, 2011.

  15. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S. Yi, and D. Letzig: Scripta Mater., 2010, vol. 63, p. 725.

    Article  CAS  Google Scholar 

  16. J.P. Hadorn and S.R. Agnew: Materials Science and Engineering, University of Virginia, Charlottesville, VA, K. Hantzsche, S. Yi, J. Bohlen, and D. Letzig: Magnesium Innovation Center (MagIC), HZG, Geesthacht, Germany, unpublished research, 2011.

  17. C.S. Smith: Trans. AIME, 1948, vol. 175, p. 15.

    Google Scholar 

  18. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing, Boston, MA, 1992.

    Google Scholar 

  19. T. Gladman: P. Roy. Soc. Lond. A Mat., 1966, vol. A294, p. 298.

    Article  Google Scholar 

  20. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, UK, 2004.

    Google Scholar 

  21. Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow: CALPHAD, 1988, vol. 12, p. 375.

    Article  CAS  Google Scholar 

  22. S.L. Couling, J.F. Pashak, and L. Sturkey: Trans. TMS-AIME, 1959, vol. 51, p. 94.

    Google Scholar 

  23. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, p. 4277.

    Article  CAS  Google Scholar 

  24. M.R. Barnett, M.D. Nave, and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. 386, p. 205.

    Google Scholar 

  25. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, p. 429.

    Article  Google Scholar 

  26. Y.B. Chun and C.H.J. Davies: Magnesium Technology 2010: Proceedings of TMS Eds., S.R. Agnew, N.R. Neelameggham, E.A. Nyberg, and W.H. Sillekens, TMS, Seattle, WA, 2010, p. 433.

  27. Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3473-87.

    Article  Google Scholar 

  28. U.F. Kocks, C.N. Tome, and H-R. Wenk: Texture and Anisotropy, Cambridge University Press, New York, NY, 1998.

    Google Scholar 

  29. J.F. Nie: Physical Properties of Crystals, Oxford University Press, New York, NY, 1985.

    Google Scholar 

  30. M. Bestmann and D.J. Prior: J. Struct. Geol., 2003, vol. 25, p. 1597.

    Article  Google Scholar 

  31. D.J. Prior: J. Microscopy, 1999, vol. 195, p. 217.

    Article  Google Scholar 

  32. M.M. Avedesian and H. Baker, eds.: ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.

  33. B.J. Kestel: Ultramicroscopy, 1986, vol. 19, p. 205.

    Article  CAS  Google Scholar 

  34. L. Bourgeois, B.C. Muddle, and J.F. Nie: Acta Mater., 2001, vol. 49, p. 2701.

    Article  CAS  Google Scholar 

  35. T. Walther, A. Recnik, and N. Daneu: Microchim. Acta, 2006, vol. 155, p. 313.

    Article  CAS  Google Scholar 

  36. Q. Miao, L. Hu, X. Wang, and E. Wang: J. Alloy. Compd., 2010, vol. 493, p. 87.

    Article  CAS  Google Scholar 

  37. C.W. Su, L. Lu, and M.O. Lai: Philos. Mag., 2008, vol. 88, p. 181.

    Article  CAS  Google Scholar 

  38. M. Wang, B.Y. Zong, and G. Wang: Comp. Mater. Sci., 2009, vol. 45, p. 217.

    Article  CAS  Google Scholar 

  39. S.G. Kim and Y.B. Park: Acta Mater., 2008, vol. 56, p. 3739.

    Article  CAS  Google Scholar 

  40. M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa: Mater. Sci. Eng. A, 1998, vol. 252, p. 248.

    Article  Google Scholar 

  41. A. Couret and D. Calliard: Acta Metall. Mater., 1985, vol. 33, p. 1447.

    Article  CAS  Google Scholar 

  42. A. Couret and D. Calliard: Acta Metall. Mater., 1985, vol. 33, p. 1455.

    Article  CAS  Google Scholar 

  43. W. Puschl: Progr. Mater. Sci., 2002, vol. 47, p. 415.

    Article  Google Scholar 

  44. A. Akhtar and E. Teghtsoonian: Acta Metall. Mater., 1969, vol. 17, p. 1339.

    Article  CAS  Google Scholar 

  45. A. Akhtar and E. Teghtsoonian: Acta Metall. Mater., 1969, vol. 17, p. 1351.

    Article  CAS  Google Scholar 

  46. A. Akhtar and E. Teghtsoonian: Philos. Mag., 1972, vol. 25, p. 897.

    Article  CAS  Google Scholar 

  47. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. AIME, 1958, vol. 50, p. 856.

    Google Scholar 

  48. A. Urakami and M.E. Fine: Acta Metall. Mater., 1971, vol. 19, p. 887.

    Article  CAS  Google Scholar 

  49. A. Sato and M. Meshii: Acta Metall. Mater., 1973, vol. 21, p. 753.

    Article  CAS  Google Scholar 

  50. B. Raeisinia, S.R. Agnew, and A. Akhtar: Metall. Mater. Trans. A, 2011, vol. 42A, p. 1418.

    Article  Google Scholar 

  51. J.A. Yasi, L.G. Hector Jr., and D.R. Trinkle: Acta Mater., 2010, vol. 58, p. 5704.

    Article  CAS  Google Scholar 

  52. N. Stanford and M.R. Barnett: Mater. Sci. Eng. A, 2008, vol. 496, p. 399.

    Article  Google Scholar 

  53. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and É. Martin: Acta Mater., 2011, vol. 59, p. 2046.

    Article  CAS  Google Scholar 

  54. J.J. Burton and E.S. Machlin: Phys. Rev. Lett., 1976, vol. 37, p. 1433.

    Article  CAS  Google Scholar 

  55. F.F. Abraham: Phys. Rev. Lett., 1981, vol. 46, p. 546.

    Article  CAS  Google Scholar 

  56. M.P. Seah: J. Catal., 1979, vol. 57, p. 450.

    Article  CAS  Google Scholar 

  57. P. Wynblatt and R.C. Ku: Surf. Sci., 1977, vol. 65, p. 511.

    Article  CAS  Google Scholar 

  58. R. Defay, I. Prigogine, A. Bellemans, and D.H. Everett: Surface Tension and Adsorption, Wiley, New York, NY, 1966, p. 158.

    Google Scholar 

  59. D. McLean: Grain Boundaries in Metals, Oxford University Press, London, UK, 1957.

    Google Scholar 

  60. F.L. Williams and D. Nason: Surf. Sci., 1974, vol. 45, p. 377.

    Article  CAS  Google Scholar 

  61. R.A. Swalin: Thermodynamics of Solids, 2nd ed., Wiley, New York, NY, 1972.

    Google Scholar 

  62. J. Friedel: Adv. Phys., 1954, vol. 3, p. 446.

    Article  Google Scholar 

  63. J.H. Jun, B.K. Park, J.M. Kim, K.T. Kim, and W.J. Jung: Mater. Sci. Forum, 2005, vols. 488–489, p. 107.

    Article  Google Scholar 

  64. S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng. A, 2009, vol. 526, p. 22.

    Article  Google Scholar 

  65. L.B. Tong, M.Y. Zheng, X.S. Hu, K. Wu, S.W. Xu, S. Kamado, and Y. Kojima, Mater. Sci. Eng. A, 2010, vol. 527, p. 4250.

    Article  Google Scholar 

  66. L.B. Tong, M.Y. Zheng, H. Chang, X.S. Hu, K. Wu, S.W. Xu, S. Kamado, and Y. Kojima: Mater. Sci. Eng. A, 2009, vol. 523, p. 289.

    Article  Google Scholar 

  67. N. Stanford, G. Sha, A. La Fontaine, M.R. Barnett, and S.P. Ringer: Metall. Mater. Trans A, 2009, vol. 40A, p. 2480.

    Article  CAS  Google Scholar 

  68. T. Al-Samman and X. Li: Mater. Sci. Eng. A, 2011, vol. 528, p. 3809.

    Article  Google Scholar 

  69. N. Stanford: Mater. Sci. Eng. A, 2010, vol. 527, p. 2669.

    Article  Google Scholar 

  70. S.A. Farzadfar, M. Sanjari, I.-H. Jung, E. Essadiqi, and S. Yue: Mater. Sci. Eng. A, 2011, vol. 528, p. 6742.

    Article  CAS  Google Scholar 

  71. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Elsevier Science Inc., Atlanta, GA, 1995.

    Google Scholar 

  72. M.R. Barnett: Acta Mater., 2007, vol. 55, p. 3271.

    Article  CAS  Google Scholar 

  73. M. Guillope and J.P. Poirier: J. Geophys. Res., 1979, vol. 84, p. 5557.

    Article  Google Scholar 

  74. E.A. Grey and G.T. Higgins: Acta Metall. Mater.., 1973, vol. 21, p. 309.

    Article  CAS  Google Scholar 

  75. M. Stipp, H. Stünitz, R. Heilbronner, and S.M. Schmid: J. Struct. Geol., 2002, vol. 24, p. 1861.

    Article  Google Scholar 

  76. S.H. White: Philos. T. Roy. Soc. A, 1976, vol. 283, p. 69.

    Article  Google Scholar 

  77. S.E. Ion, F.J. Humphreys, and S.H. White: Acta Metall. Mater., 1982, vol. 30, p. 1909.

    Article  CAS  Google Scholar 

  78. P.D. Tungatt and F.J. Humphreys: Acta Metall. Mater., 1984, vol. 32, p. 1625.

    Article  CAS  Google Scholar 

  79. A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, p. 1199.

    Article  CAS  Google Scholar 

  80. É. Martin, S. Godet, L. Jiang, A. Elwazri, P.J. Jacques, and J.J. Jonas: Proceeding of the 15th International Conference on Textures of Materials, A.D. Rollett, ed., ICOTOM, 2008, p. 15.

  81. D. Ando and J. Koike: J. Jpn. I. Met., 2007, vol. 71, p. 684.

    Article  CAS  Google Scholar 

  82. L.W.F. Mackenzie and M.O. Pekguleryuz: Scripta Mater., 2008, vol. 59, p. 665.

    Article  CAS  Google Scholar 

  83. L. Jiang, J.J. Jonas, and R. Mishra: Mater. Sci. Eng. A, 2011, vol. 528, p. 6596.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Foundation (Grant Number DMR-0603066) and Deutsche Forschungsgemeinschaft (Grant Number LE 1395/3-1) World Materials Network support this research collaboration financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Agnew.

Additional information

Manuscript submitted October 8, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadorn, J.P., Hantzsche, K., Yi, S. et al. Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys. Metall Mater Trans A 43, 1347–1362 (2012). https://doi.org/10.1007/s11661-011-0923-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0923-5

Keywords

Navigation