Skip to main content
Log in

The Role of Eta Phase Formation on the Creep Strength and Ductility of INCONEL Alloy 740 at 1023 K (750 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

INCONEL alloy 740 is an age-hardenable nickel-based superalloy proposed for advanced ultrasupercritical steam boiler applications operating at high stress and long times above 973 K (700 °C), where creep will be the dominate deformation mode. During high-temperature exposure, the alloy can form eta phase platelets that many have suggested may be detrimental to creep strength and ductility. In this study, creep-rupture tests were conducted on smooth and notched bars of INCONEL alloy 740 at 1023 K (750 °C) for times up to 20,000 hours. Examination of the creep-rupture life, creep ductility, failure modes, and microstructure by quantitative electron microscopy shows that a small amount of eta phase does not diminish the creep performance. Applied stress appears to have a minor effect on the precipitation of the eta phase but not its growth rate. Based on the observation that the microstructure after 20,000 hours of creep exposure has reached equilibrium in comparison to thermodynamic calculations, it is concluded that 20,000 hour creep tests are adequate for prediction of long-term creep performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. INCONEL is a trademark of Special Metals Corporation, New Hartford, NY.

  2. JMATPRO is a trademark of Sente Softward Ltd., Surrey, United Kingdom.

References

  1. R. Viswanathan, R. Purgert, and U. Rao: Materials for Advanced Power Engineering 2002, Proc. Part II, Forschungszentrum Julich GmbH, 2002, pp. 1109–29.

    Google Scholar 

  2. R. Viswananthan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert: J. Mater. Eng. Perform., 2005, vol. 14, pp. 281–92.

    Article  Google Scholar 

  3. J.P. Shingledecker and I.G. Wright: Proc. 8th Liege Conf. on Materials for Advanced Power Engineering 2006, Forschungszentrum Jülich GmbH, Liege, Belgium, 2006, pp. 107–20.

  4. G.D. Smith and H.W. Sizek: Proc. Corrosion 2000, NACE International, NACE, Houston, TX, 2000, paper no. 00256.

  5. “Inconel® alloy 740,” SMC-090, Special Metals Corporation, Huntington, West Virginia, Feb. 3, 2003.

  6. N.D. Evans, P.J. Maziasz, R.W. Swindeman, and G.D. Smith: Scripta Mater., 2004, vol. 51, pp. 503–07.

    Article  CAS  Google Scholar 

  7. S. Zhao, X. Xie, G.D. Smith, and S.J. Patel: Mater. Sci. Eng., 2003, vol. A355, pp. 96–105.

    CAS  Google Scholar 

  8. X. Xie, S. Zhao, J. Dong, G.D. Smith, B.A. Baker, and S.J. Patel: Mater. Sci. Forum, 2007, vols. 561–565, pp. 471–76.

    Article  Google Scholar 

  9. N. Saunders, A.P. Miodownik, and J.-P. Schille: J. Mater. Sci., 2004, vol. 29, pp. 7237–43.

    Article  Google Scholar 

  10. B.W. Roberts: ASM Handbook, vol. 8, Mechanical Testing, ASM INTERNATIONAL, Metals Park, OH, 1995, pp. 343–45.

  11. J.M. Church, J.M. Brear, and D.R. Humphrey: Key Eng. Mater., 2000, vols. 171–174, pp. 61–68.

    Article  Google Scholar 

  12. G.A. Webster, S.R. Holdsworth, M.S. Loveday, K. Nikbin, I.J. Perrin, H. Purper, R.P. Skelton, and M.W. Spindler: Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, pp. 319–42.

    Article  Google Scholar 

  13. D.L. Marriott and P. Carter: Proc. PVP2005, Denver, Colorado, 2005, PVP2005-71419.

  14. R.J. Browne, D. Lonsdale, and P.E.J. Flewitt: J. Eng. Mater. Technol., 1982, vol. 104, pp. 291–96.

    Article  Google Scholar 

  15. M.J. Manjoine: Trans. ASME, 1975, Apr., pp. 156–61.

  16. M.W. Spindler: Fatigue Fract. Eng. Mater. Struct., 2003 vol. 27, pp. 273–81.

    Google Scholar 

  17. M.W. Spindler, R. Hales, and R.P. Skelton: Proc. 9th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., IOM, London, United Kingdom, 2001.

  18. X. Xie, S. Zhao, J. Dong, G.D. Smith, B.A. Baker, and S.L. Patel: Proc. 5th Int. Conf. on Advances in Materials Technology for Fossil Power Plants, Marco Island, FL, Oct. 3–5, 2007, Electric Power Research Institute, Palo Alto, CA, 2008, pp. 220–30.

  19. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep, Taylor & Francis Ltd., Bristol, Pennsylvania, 1995, pp. 187–90.

  20. M.J. Donachie and S.J. Donachie: Superalloys A Technical Guide, ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 25–27.

    Google Scholar 

  21. L. Remy, J. Laniesse, and H. Aubert: Mater. Sci. Eng., 1979, vol. 38, pp. 227–39.

    Article  CAS  Google Scholar 

  22. Y.F. Gu, H. Harada, C. Cui, D. Ping, T. Fukuda, and J. Fujioka: Proc. 7th Int. Charles Parsons Turbine Conf., Glasgow, United Kingdom, 2007.

  23. Y.H. Zhang and D.M. Knowles: Mater. Sci. Technol., 2002, vol. 18, pp. 917–23.

    Article  CAS  Google Scholar 

  24. X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, and H.Q. Ye: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 3014–22.

    Article  CAS  Google Scholar 

  25. W.R. Sun, S.R. Guo, D.Z. Lu, and Z.Q. Hu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 649–54.

    Article  Google Scholar 

  26. S. Muller and J. Rosler: Proc. 5th Int. Charles Parsons Turbine Conf., Cambridge, United Kingdom, IOM3, London, United Kingdom, July 3–7, 2000, pp. 444–58.

Download references

ACKNOWLEDGMENTS

Research at Oak Ridge National Laboratory (Oak Ridge, TN) was supported by the United States Department of Energy (DOE), Office of Fossil Energy, Advanced Research Materials Program, the DOE/OCDO USC Steam Boiler Consortium, and the ORNL SHaRE User Center, Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE, under Contract No. DE-AC05-00OR22725 with UT–Battelle, LLC. Special thanks to B. Sparks and T. Geer (ORNL), for their assistance with the experimental work, and M. Santella (ORNL and current principle investigator on this project) for helpful discussions. The support of consortium sponsors and the technical direction of R. Romanosky, P. Rawls, R. Viswanathan, M. Marrocco, and B. Purgert is appreciated. One of the authors (GMP) gratefully acknowledges the Alexander von Humboldt Foundation for fellowship support during the period in which the manuscript was prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Shingledecker.

Additional information

Manuscript submitted July 5, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shingledecker, J.P., Pharr, G.M. The Role of Eta Phase Formation on the Creep Strength and Ductility of INCONEL Alloy 740 at 1023 K (750 °C). Metall Mater Trans A 43, 1902–1910 (2012). https://doi.org/10.1007/s11661-011-1013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1013-4

Keywords

Navigation