Skip to main content
Log in

Material Characterization of Austempered Ductile Iron (ADI) Produced by a Sustainable Continuous Casting–Heat Treatment Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Selecting a suitable manufacturing process is one way of achieving sustainability of a product by diminishing energy consumption during its production cycle and improving material efficiency. The article attempts to explore the new processing technology for direct manufacturing of lightweight austempered ductile iron (ADI) casting in a permanent mold. The new processing technology is based on the innovative integrated approach toward casting and heat-treatment process. In this technology, the ductile iron samples obtained using the permanent mold are first austenized immediately after solidification process followed by austempering heat treatment in the fluidized bed and then air cooled at room temperature to obtain ADI material. The influence of austempering time on the microstructural characteristics, mechanical properties, and strain-hardening behavior of ADI was studied. Optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were performed to correlate the mechanical properties with microstructural characteristics. It was observed that the mechanical properties of resulting ADI samples were influenced by the microstructural transformations and varied retained austenite volume fractions obtained due to different austempering time. The results indicate that the strain-hardening behavior of the ADI material is influenced by the carbon content of retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. SIL-O-CEL is a trademark of Johns-Manville Corporation, Denver, CO.

References

  1. L.C. Chang: Scripta Mater., 1998, vol. 39, no. 1, pp. 35–38.

    Article  CAS  Google Scholar 

  2. F. Klocke, M. Arft, and D. Lung: Prod. Eng., 2010, vol. 4, no. 5, pp. 433–41.

    Article  Google Scholar 

  3. J. Achary and D. Venugopalan: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2575–85.

    Article  CAS  Google Scholar 

  4. U. Batra, S. Ray, and S.R. Prabhakar: J. Mater. Eng. Perform., 2003, vol. 12, no. 5, pp. 597–601.

    Article  CAS  Google Scholar 

  5. Y. Amran, A. Katsman, P. Schaaf, and M. Bamberger: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1052–58.

    Article  CAS  Google Scholar 

  6. A. Trudel and M. Gagne: Can. Metall. Q., 1997, vol. 36, no. 5, pp. 289–98.

    Article  CAS  Google Scholar 

  7. P.A. Blackmore and R.A. Hardning: J. Heat Treat., 1984, vol. 3, no. 4, pp. 310–25.

    Article  CAS  Google Scholar 

  8. L. Sidjanin, M. Novovic, and R.E. Smallman: Pract. Metallogr., 1996, vol. 33, no. 1, pp. 2–16.

    CAS  Google Scholar 

  9. A.A. Nofal and L. Jekova: J. Univ. Chem. Tech. Metall., 2009, vol. 44, no. 3, pp. 213–28.

    CAS  Google Scholar 

  10. J. Achary: JMEPEG, 2000, vol. 9, pp. 56–61.

    Article  CAS  Google Scholar 

  11. J.F. Janowak and R.B. Gundlach: J. Heat Treat., 1985, vol. 4, no. 1, pp. 25–31.

    Article  CAS  Google Scholar 

  12. J. Yang and S.K. Putatunda: Mater. Des., 2004, vol. 25, no. 3, pp. 219–30.

    Article  CAS  Google Scholar 

  13. M. Erdogan, V. Kilicli, and B. Demir: J. Mater. Sci., 2009, vol. 44, no. 5, pp. 1394–1402.

    Article  CAS  Google Scholar 

  14. A. Basso, M. Caldera, M. Chapetti, and J. Sikora: ISIJ Int., 2010, vol. 50, no. 2, pp. 302–06.

    Article  CAS  Google Scholar 

  15. Ductile Iron Data for Design Engineers, http://www.ductile.org/didata/default.htm.

  16. J.O. Choi, J.Y. Kim, C.O. Choi, J.K. Kim, and P.K. Rohatgi: Mater. Sci. Eng. A, 2004, vol. 383, no. 2, pp. 323–33.

    Article  Google Scholar 

  17. S. Bockus and A. Dobrovolskis: Metalurgica, 2006, vol. 45, no. 1, pp. 13–16.

    CAS  Google Scholar 

  18. M.H. Jacobs, T.J. Law, D.A. Melford, and M.J. Stowell: Metall. Technol., 1974, vol. 1, no. 2, pp. 490–500.

    Google Scholar 

  19. J.R. Davis: ASM Specialty Handbook (Cast Irons), ASM International, Materials Park, OH, 1996, pp. 131–55.

    Google Scholar 

  20. D.M. Stefanescu: ASM Handbook, vol. 15, Casting, ASM International, Materials Park, OH, 1998, pp. 441–1500.

  21. A. Meena and M.El Mansori: Int. J. Adv. Manufact. Tech., 2012, vol. 59, no. 1, pp. 9–19.

    Article  Google Scholar 

  22. A. Meena and M. El Mansori: Wear, 2011, vol. 271(9–10), pp. 2412–16.

  23. P. Beeley: Foundry Technology, 2nd ed., Butterworth-Heinemann, Oxford, U.K., 2001, pp. 443–622.

    Book  Google Scholar 

  24. S.V. Shepel and S. Paolucci: Appl. Therm. Eng., 2002, vol. 22, no. 2, pp. 229–48.

    Article  CAS  Google Scholar 

  25. A. Meena, M. El Mansori, and P. Ghidossi: AIP Conf. Proc., 2010, vol. 1315, pp. 1521–26.

    CAS  Google Scholar 

  26. A. Meena, M. El Mansori, P. Ghidossi, and A. Mkaddem: AIP Conf. Proc., 2011, vol. 1353, pp. 1800–05.

    Article  CAS  Google Scholar 

  27. R.E. Haimbaugh: Practical Induction Heat Treating, ASM International, Materials Park, OH, 2001, pp. 83–119.

    Google Scholar 

  28. E. Haruman, Y. Sun, A. Triwiyanto, Y.H.P. Manurung, and E.Y. Adesta: J. Mater. Eng. Perform., 2011, vol. 21, no. 3, pp. 388–94.

    Article  Google Scholar 

  29. Y. Waseda, E. Matsubara, and K. Shinoda: X-Ray Diffraction Crystallography, Springer, New York, NY, 2011, pp. 107–50.

    Book  Google Scholar 

  30. H.B. Hosseini, B. Karlsson, T. Vouristo, and K. Dalaei: Exp. Mech., 2011, vol. 51, no. 1, pp. 59–69.

    Article  CAS  Google Scholar 

  31. E.A. Brandes and G.B. Brooks: Smithells Metal Reference Book, 7th ed., Butterworth-Heinemann, Oxford, U.K., 1992, pp. 41–48.

  32. G.E. Dieter: Mechanical Metallurgy, SI Metric Edition, McGraw-Hill, Cambridge, U.K., 1988, pp. 103–325.

  33. S. Zhou, K. Zhang, Y. Wang, J.F. Gu, and Y.H. Rong: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1026–34.

    Article  Google Scholar 

  34. U. Seker and H. Hasirci: J. Mater. Process. Tech., 2006, vol. 173, no. 3, pp. 260–68.

    Article  CAS  Google Scholar 

  35. S.K. Putatunda and P.K. Gadicherla: JMEPEG, 2000, vol. 9, pp. 193–203.

    Article  CAS  Google Scholar 

  36. B. Bosnjak, B. Radulovic, K. Pop-Tonev, and V. Asanovic: JMEPEG, 2001, vol. 10, pp. 203–11.

    Article  CAS  Google Scholar 

  37. S.K Putatunda, S. Kesani, R. Teckett, and G. Lawes: Mater. Sci. Eng. A, vols. 435–436, pp. 112–22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Mansori.

Additional information

Manuscript submitted November 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meena, A., El Mansori, M. Material Characterization of Austempered Ductile Iron (ADI) Produced by a Sustainable Continuous Casting–Heat Treatment Process. Metall Mater Trans A 43, 4755–4766 (2012). https://doi.org/10.1007/s11661-012-1271-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1271-9

Keywords

Navigation