Skip to main content
Log in

Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

  • Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from 80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J.H. Mulherin: Stress Corrosion Testing, ASTM-STP 425, Philadelphia, PA, 1967, pp. 66-81.

  2. A.J. McEvily, J.B. Clark and A.P Bond: Trans. ASM, 1967, vol. 60, pp. 661-71.

    CAS  Google Scholar 

  3. R. Shipp: Research Report A1747, The British Non-Ferrous Metal Research Association, London, October 1969.

  4. M.V. Hyatt: Reports DC-24466, DC-24467, DC-24469, DC-24470, The Boeing Company, Seattle, November 1969.

  5. M.V. Hyatt: Corrosion, 1970, vol. 26, pp. 487-503.

    CAS  Google Scholar 

  6. A.H. Le and R.T. Foley: Corrosion, 1983, vol. 39, pp. 379-83.

    Article  CAS  Google Scholar 

  7. H.F. de Jong: Aluminium, 1981, vol. 11, pp. 526–31.

    Google Scholar 

  8. L.R. Hall, R.W. Finger, and W.F. Spurr: Report AFML-TR-73-204, The Boeing Company, Seattle, September, 1973.

  9. M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, Brussels, Belgium, 1971, pp. 298–344.

  10. S.P. Knight: Ph.D. Thesis, Monash University, Melbourne, 2008.

  11. S.P. Lynch, S.P. Knight, N. Birbillis, and B.C. Muddle: in Effects of Hydrogen in Metals, B. Somerday, P. Sofronis, and R. Jones, eds., ASM International, Materials Park, 2009, pp. 243–50.

  12. D.O. Sprowls, M.B. Shoemaker, J.D. Walsh, and J.W. Coursen: Final Report, Prepared for George C. Marshall Space Flight Center, Alabama, Contract No. NAS-8021487-Part 1, May 31, 1973.

  13. J.D. Kaufman, J.W Coursen, and D.O. Sprowls: ASTM-610, H.L. Craig, Jr., ed., ASTM, Philadelphia, PA, 1976, pp. 94–107.

  14. K.L. Deffenbaugh: United States Naval Academy Trident Scholar Report No. 304, April 2003.

  15. M. Cook, R. Chadwick, N.B. Muir: J. Inst. Met., 1951, vol. 79, pp. 293-320.

    CAS  Google Scholar 

  16. L.H. Chambers and D.C. Baxter: Engineer, 1967, vol. 223, pp. 518–20.

    Google Scholar 

  17. K.G. Kent: Metall. Rev., 1970, vol. 15(147), pp. 135–46.

    Article  Google Scholar 

  18. W. Gruhl: Aluminium, 1978, vol. 54, pp. 323–25.

    CAS  Google Scholar 

  19. K.R. Anderson: U.S. Patent 5,312,498, May 17, 1994.

  20. N.J.H. Holroyd: in Environment-Induced Cracking of Metals, R.P Gangloff and M.B Ives, eds., NACE, Houston, TX, 1990, pp. 311–45.

  21. C.M. Liao: Corrosion, 1993, vol. 49, pp. 52-59.

    Article  CAS  Google Scholar 

  22. S. Lee, S.L. Pyun, and Y. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407-14.

    CAS  Google Scholar 

  23. S. Pyun, M. Hong and H. Kim: Br. Corros J., 1991, vol. 26, pp. 260-64.

    CAS  Google Scholar 

  24. N.J.H. Holroyd and D. Hardie: Corros. Sci., 1983, vol. 23, pp. 527-46.

    Article  CAS  Google Scholar 

  25. L.P. Huang, K.H. Chen, S. Li and M. Song: Scripta Mater., 2007, vol. 56, pp. 305-08.

    Article  CAS  Google Scholar 

  26. J.E. Finnegan and W.H. Hartt: in Stress Corrosion—New Approaches, ASTM-STP 610, H.L. Craig, ed., ASTM, Philadelphia, PA, 1976, pp. 44–60.

  27. J.K Park: Mater. Sci. Eng., 1988, vol. A103, pp. 223-31.

    CAS  Google Scholar 

  28. E.C.H. Pow: Master’s Thesis, University of Minnesota, 1979.

  29. E.C.H. Pow: Ph.D. Thesis, University of Minnesota, 1982.

  30. S. Osaki, D. Itoh and M Nakai: J. Jpn. Inst. Light Met., 2001, vol. 51, pp. 222-27.

    Article  CAS  Google Scholar 

  31. B. Jegdic and B. Bobic: Zastita Mater. 2007, vol. 48, pp. 14-18.

    Google Scholar 

  32. M.O. Speidel, R. Machler, and R. Magdowski: in 3rd International Conference on Aluminum Alloys (ICAA3), L. Arnberg, O. Lohne, E. Ness, and N. Ryum, eds., Trondheim, Norway, 1992, pp. 461–66.

  33. N.J.H. Holroyd and D. Hardie: Met. Technol., 1982, vol. 9, pp. 229-34.

    Google Scholar 

  34. R.C. Doward and K.R. Hasse: Final NASA Report Contract No. NAS8-30890, Oct. 1976.

  35. J. Robinson and P. Flynn: 1995, Key Engineering Materials, Vols. 99-100, pp. 143-50.

    Article  Google Scholar 

  36. B.J. Connelly, M.G. Koul and A. L. Moran: Corrosion, 2005, vol. 61, pp. 976-86.

    Article  Google Scholar 

  37. B. Sakar, M. Marek and E. A. Starke: Metall. Trans. A, 1981, vol. 12A, pp. 1939-43.

    Google Scholar 

  38. M. Landkof and L. Gal-Or: Corrosion, 1980, vol. 36, pp. 241-46.

    CAS  Google Scholar 

  39. R.S. Pathania and D. Tromans: Metall. Trans. A, 1981, vol. 12A, pp. 607-12.

    Google Scholar 

  40. T. Oka, K. Take, Y. Minamino, K. Hirao and T. Yamane: J. Jpn. Inst. Light Met., 1986, vol. 36, pp. 15-21.

    Article  CAS  Google Scholar 

  41. H. Kim and S. Pyun: Taehan Kumsok Hakhoe Chi, 1984, vol. 22, pp. 621-31.

    CAS  Google Scholar 

  42. H. Gruhl: Z. Metallkunde, 1962, vol. 53, pp. 670-75.

    Google Scholar 

  43. S. Pyun: Metall, 1984, vol. 38, pp. 229-31.

    CAS  Google Scholar 

  44. H.B. Romans and H.L. Craig: Stress Corrosion Testing, ASTM-STP 425, Philadelphia, PA, 1966, pp. 363–78.

  45. W.J. Helfrich: Stress Corrosion Testing, ASTM-STP 425, Philadelphia, PA, 1966, pp. 21–30.

  46. Y. Choi, H.C. Kim, and S. Pyun: J. Mater. Sci., 1984, vol. 19, pp. 1517-21.

    Article  CAS  Google Scholar 

  47. M.O. Speidel and M.V. Hyatt: Advanced Corrosion Science Technology, vol. 2, Plenum Press, New York, NY, 1972, pp. 115–335.

  48. J. Onoro and C. Ranninger: J. Mater. Sci., 1999, vol. 35, pp. 509-14.

    Article  CAS  Google Scholar 

  49. K. Komai, K. Minoshima, and H. Yukimachi: J. Soc. Mater. Sci. Jpn., 1983, vol. 32, pp. 1238–42.

    Article  CAS  Google Scholar 

  50. S. Ohsaki, Y. Kojima and T. Takahashi: J. Jpn. Inst. Light Met., 1983, vol.33, pp. 579-87.

    Article  CAS  Google Scholar 

  51. S. Osaki: Yomaguchi Daigaku Kogakubu Kenkyu Hokou, 1977, vol. 27 (2), 269–76.

  52. M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631-51.

    CAS  Google Scholar 

  53. T. Ohnishi, H. Kojuma, N. Seko and K. Higashi: J. Jpn. Inst. Light Met., 1986, vol. 36, pp. 272-78.

    Article  CAS  Google Scholar 

  54. J. Onoro, A. Moreno and C. Ranninger: J. Mater. Sci., 1989, vol. 24, pp. 3888-91.

    Article  CAS  Google Scholar 

  55. F.S. Bovard: Master’s Thesis, University of Pittsburgh, 2005.

  56. G.M. Scamans, M.F. Frolish, W.M. Rainforth, Z. Zhou, Y. Liu, X. Zhou and G.E. Thompson: Surf. Interface Anal., 2010, vol. 42., pp. 175-79.

    Article  CAS  Google Scholar 

  57. T.H. Nguyen and R.T. Foley: J. Electrochem. Soc., 1980, vol. 127, pp. 2563–66.

    Article  CAS  Google Scholar 

  58. A. Berzin, R.T. Lowson and K.J. Mirams: Aust. J. Chem., 1977, vol. 30, pp. 1891-1903.

    Article  Google Scholar 

  59. D.M. Drazic, S.K. Zecevic, R.T. Atanasoski and A.P. Despic: Electochima Acta., 1983, vol. 28, pp. 751-55.

    Article  CAS  Google Scholar 

  60. P.M. Natishan, W.E. Grady, E. McCafferty, D.E. Ramaker, K. Pandya and A. Russell: J. Eletrochem. Soc., 1999, vol. 146, pp. 1737-40.

    Article  CAS  Google Scholar 

  61. A. Kolics, A.S. Besing, P. Baradlai, R. Haasch and A. Wieckowski: J. Electrochem. Soc., 2001, vol. 148, pp. B251-B259.

    Article  CAS  Google Scholar 

  62. L. Tomcsanyi, K. Varga, I. Bartik, G. Horanyi and E. Malczki: J. Electrchim. Acta, 1989, vol. 34, pp. 885-89.

    Article  Google Scholar 

  63. N.J.H. Holroyd and M.R. Jarrett: “Corrosion Chemistry within Pits, Crevices and Crack 2,” Unpublished Research, Presented at Conference held at Mansfield College, Oxford, UK, 2009.

  64. N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Corrosion Chemistry within Pits, Crevices and Cracks, A. Turnbull, ed., HMSO, London, England, 1987, pp. 495–510.

  65. N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Embrittlement by the Localized Environment, R.P. Gangloff, ed., AIME, Warrendale, PA, 1984, pp. 327–47.

  66. M.S. Domak: in Environmentally Assisted Cracking: Science and Engineering, ASTM-STP 1049, W.B Lisagor, T.W. Crocker and B.N. Leis, eds., ASTM, Philadelphia, PA, 1990, pp. 391–409.

  67. K.R. Cooper and R.G. Kelly: in Chemistry and Electrochemistry of Stress Corrosion cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones, ed., TMS, Warrendale, PA, 2001, pp. 523–42.

  68. A. Turnbull: Corrosion, 2001, vol. 57, pp. 175-89.

    Article  CAS  Google Scholar 

  69. S. Mostovoy, P.B. Crosley and E.J. Ripling: J. Mater., 1967, vol. 2, pp. 661-81.

    Google Scholar 

  70. H.R. Smith and D.E. Piper: Report D6-24872, The Boeing Company, Seattle, June 1979.

  71. K.P. Wong and R.C. Alkire: J. Electrochem. Soc., 1990, vol. 137, pp. 3010-15.

    Article  CAS  Google Scholar 

  72. Z.A Foroulis and M.J Thubrilar: J. Electrochem. Soc., 1975, vol. 122, pp. 1296-301.

    Article  CAS  Google Scholar 

  73. R.T. Foley and T.H. Nguyen: J. Electrochem. Soc., 1982, vol.129, pp. 464-67.

    Article  CAS  Google Scholar 

  74. R.T. Foley: Corrosion, 1986, vol. 42, pp. 277-88.

    Article  CAS  Google Scholar 

  75. N.J.H. Holroyd: in Environmental Effects on Engineered Materials, R.S Jones, ed., Marcel Decker, Inc., New York, 2000, pp. 173–251.

  76. F.E. Watkinson and J.C. Scully: Corrosion Science, 1972, vol. 12, pp. 905-24.

    Article  CAS  Google Scholar 

  77. A.H. Le and R.T. Foley: Corrosion, 1984, vol. 40, pp. 195-97.

    Article  CAS  Google Scholar 

  78. R.C. Doward and K.R. Hasse: Corrosion Science, 1979, vol. 19, pp. 131-40.

    Article  Google Scholar 

  79. Y. Jiang: Final Office of Naval Research Report, Contract – N00014-08-0646, April 2011.

  80. J. Zhang, S. Kalnaus, M. Behrooz and Y. Jiang: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 448-60.

    Article  Google Scholar 

  81. B.J. Connelly, K.L. Deffenbaugh, M.G. Koul, and A.L. Moran: JOM, 2003, vol. 55, pp. 49-52.

    Article  Google Scholar 

  82. A.K Vasudevan and K. Sadananda: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 396-404.

    Article  Google Scholar 

  83. L.M Young: Ph.D. Thesis: University of Virginia, Charlottesville, VA, 1999.

  84. K.R. Cooper, L.M. Young, R.P. Gangloff and R.G. Kelly: Materials Science Forum, 2000, Vol 331-337, pp. 1625-34.

    Article  Google Scholar 

  85. L.M. Young and R.P. Gangloff: in Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM International, Materials Park, OH, 2001, pp. 135–40.

  86. K.R. Cooper and R.G. Kelly: in Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM International, Materials Park, OH, 2001, pp. 73–82.

  87. K.R. Cooper and R.G. Kelly: Corrosion Science, 2007, vol. 49, pp. 2636-62.

    Article  CAS  Google Scholar 

  88. K.R. Cooper and R.G. Kelly: J. Chromatogr. A., 1999, vol.850, pp. 381–89.

    Article  CAS  Google Scholar 

  89. T.H. Nguyen, B.F. Brown and R.T Foley: Corrosion, 1982, vol.38, pp. 319-26.

    Article  CAS  Google Scholar 

  90. G.A Young and J.R. Scully: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 101-15.

    Article  CAS  Google Scholar 

  91. K. Kitamura and E. Sato: J. Jpn. Inst. Light Met., 1979, vol. 29, pp. 563-67.

    Article  CAS  Google Scholar 

  92. A.S. Tetelman and A.J. McEvily, Fracture of Structural Materials, Wiley, New York, 1967, pp. 438-40.

    Google Scholar 

  93. G.M. Scamans: Metall. Trans. A, 1980, vol. 11A, pp. 846-50.

    CAS  Google Scholar 

  94. P. Martin, J.I. Dickson and J.P. Bailon: Mater. Sci. Eng., 1985, vol. 69, pp. L9-L13.

    Article  CAS  Google Scholar 

  95. N.J.H. Holroyd and G.M Scamans: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 3979-98.

    Article  Google Scholar 

  96. C.J. Newton and N.J.H. Holroyd: in New Methods for Corrosion Testing Aluminum Alloys, ASTM-STP 1134, V.S. Agarwala and G.M. Ugiansky, eds., ASTM, Philadelphia, PA, 1992, pp. 153–79.

  97. C.A. Loto and R. A. Cottis: Corrosion, 1989, vol. 45, pp. 136-41.

    Article  CAS  Google Scholar 

  98. M.S. Domack: in Corrosion Cracking, V.S Groel, ed., ASM, Materials Park, OH, 1986, pp. 191–96.

  99. J.P. Nordin, D.J. Sullivan, B.L. Phillips and W.H. Case: Inorg. Chem., 1998, vol. 37, pp. 4760–63.

    Article  CAS  Google Scholar 

  100. D.J. Sullivan, J.P. Nordin, B.L. Phillips and W.H. Casey: Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 1471-80.

    Article  CAS  Google Scholar 

  101. M. Watanabe: J. Phys. Chem. Solids, 2010, vol. 71, pp. 1251-58.

    Article  CAS  Google Scholar 

  102. T. Magnin, A. Chambreuil and B. Bayle: Acta Mater., 1996, vol. 44, pp. 1457-70.

    Article  CAS  Google Scholar 

  103. M. Abe, K. Ouchi, K. Asano and A. Fujiwara: J. Jpn. Inst. Met., 1981, vol. 45, pp. 1161-69.

    CAS  Google Scholar 

  104. T.H. Sanders and E.A. Starke: Metall. Trans. A, 1976, vol. 7A, pp. 1407-18.

    CAS  Google Scholar 

  105. E.A. Starke: Mater. Sci. Eng., 1977, vol. 29, pp. 99-115.

    Article  CAS  Google Scholar 

  106. F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27-41.

    Article  CAS  Google Scholar 

  107. S.W. Ciaraldi, J.L. Nelson, R.A. Yeske and E.N. Pugh: Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., AIME, Warrendale, PA, 1981, pp. 437–47.

  108. R. Hermann: Corrosion, 1988, vol. 44, pp. 685-90.

    Article  CAS  Google Scholar 

  109. F.P. Ford: Corrosion, 1979, vol. 35, pp. 281-89.

    CAS  Google Scholar 

  110. N. Lampeas and P.G. Koutoukos: Corros. Sci., 1994, vol. 36, pp. 1011–025.

    Article  CAS  Google Scholar 

  111. M. Metikos-Hukovic, R. Babic, Z. Grubac and S. Brinic: J. Appl. Chem., 1994, vol. 24, pp. 325-31.

    CAS  Google Scholar 

  112. B. Bavarian, L. Reiner, H. Youssefpour, and I. Juraga: in Corrosion 2005—Paper #65329, NACE, Houston, 2005.

  113. O.D. Sherby, J.L. Lytonn and J.E. Dorn: Acta Metall., 1957, vol.5, pp. 219-27.

    Article  CAS  Google Scholar 

  114. T. Ishikawa and R.B. McLellan: Acta Metall., 1986, vol.34, pp. 1091-95.

    Article  CAS  Google Scholar 

  115. G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 18, pp. 6337-49.

    Article  Google Scholar 

  116. J.R. Scully, G.A. Young and S.W. Smith: Materials Science Forum, 2000, vols. 331-337, pp. 1583-600.

    Article  Google Scholar 

  117. S. Ohsaki, Y. Kojima and T. Takahashi: J. Jpn. Inst. Light Met., 1983, vol.33, pp. 539-46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Henry Holroyd.

Additional information

Manuscript submitted July 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holroyd, N.J.H., Scamans, G.M. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments. Metall Mater Trans A 44, 1230–1253 (2013). https://doi.org/10.1007/s11661-012-1528-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1528-3

Keywords

Navigation