Skip to main content
Log in

A Multiscale 3D Model of the Vacuum Arc Remelting Process

  • Symposium:Defects and Properties of Cast Metals
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-dimensional, transient, multiscale model of the VAR process is presented, allowing novel simulations of the influence of fluctuations in arc behavior on the flow and heat transfer in the molten pool and the effect this has on the microstructure and defects. The transient behavior of the arc was characterized using the external magnetic field and surface current measurements, which were then used as transient boundary conditions in the model. The interactions of the magnetic field, turbulent metal flow, and heat transfer were modeled using CFD techniques and this “macro” model was linked to a microscale solidification model. This allowed the transient fluctuations in the dendritic microstructure to be predicted, allowing the first coupled three-dimensional correlations between macroscopic operational parameters and microstructural defects to be performed. It was found that convection driven by the motion of the arc caused local remelting of the mushy zone, resulting in variations in permeability and solute density. This causes variations in the local Rayleigh number, leading to conditions under which freckle solidification defects will initiate. A three-dimensional transient tracking of particle fall-in was also simulated, enabling predictions of “white spot” defects via quantification of the trajectory and dissolution of inclusions entering the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bertram L, Schunk P, Kempka S., Spadafora F, Minisandram R: JOM Journal of the Minerals, Metals and Materials Society, 50 (3), pp 18-21,1998.

    Article  CAS  Google Scholar 

  2. Van Den Avyle J, Brooks J, Powell A: JOM 50(3), pp22-25, 1998.

    Article  Google Scholar 

  3. Quatravaux T, Ryberon S, Hans S, Jardy A, Lusson B, Richy PE Ablitzer D (2004) J. Mater. Sci. 39(24):7183-7191

    Article  CAS  Google Scholar 

  4. Chapelle, P, Jardy, A, Bellot, J, Minvielle, M: Journal of Materials Science,43(17), pp5734-5746, 2008.

    Article  CAS  Google Scholar 

  5. K.M. Kelkar, S.V. Patankar, A. Mitchell, O. Kanou, N. Fukada, and K. Suzuki: Computational Modeling of the Vacuum Arc Remelting Process Used for the Production of Ingots of Titanium Alloys, http://inres.com/assets/files/meltflow/VAR-Model_Ti-2007-Conference.pdf.

  6. Ward RM, Jacobs MH (2004) Journal of Materials Science 39:7135–7143.

    Article  CAS  Google Scholar 

  7. R. Woodside: MSc Thesis, Oregon State University, 2008.

  8. Shevchenko D, Ward R: Metall. Mater. Trans. B, 40(3), pp248-253, 2009.

    Article  CAS  Google Scholar 

  9. Yuan L, Djambazov G, Lee PD, Pericleous K (2009) International Journal of Modern Physics B, 23(6):1584–1590

    Article  CAS  Google Scholar 

  10. Atwood R, Lee P, Minisandram R, Jones R (2001) Journal of Materials Science 39(24):7193-7197.

    Article  Google Scholar 

  11. Yuan L, Lee PD, Djambazov G, Pericleous K (2009) International Journal of Cast Metals Research 22(1–4):147-150.

    Google Scholar 

  12. Van den Avyle JA, Brooks JA, Powell AC (1998) JOM 50(3): 22-25.

    Article  Google Scholar 

  13. Zhang W, Lee PD, McLean M (2002) Metallurgical and Materials Transactions A 33:443-454.

    Article  CAS  Google Scholar 

  14. Cross M, Bailey C, Pericleous K, Williams A, Bojarevics V, Croft TN, and Taylor G (2002) JOM 54:1.

    Article  Google Scholar 

  15. Bounds S, Moran G, Pericleous K, Cross M, Croft TN (2000) Metall. Mater. Trans. B 31B: pp. 515-527.

    Article  CAS  Google Scholar 

  16. Bojarevics V, Harding RA, Pericleous K, Wickins M (2004) Metall. Mater. Trans. B 35:785.

    Article  CAS  Google Scholar 

  17. Tsirkas,S. A. and Papanikos,P. and Pericleous,K. and Strusevich,N. and Boitout,F. and Bergheau,J. M.: Sci. Tech. Welding and Joining, 2003;8(2);79.

    Article  Google Scholar 

  18. The PHYSICA code, http://staffweb.cms.gre.ac.uk/~physica/.

  19. B.G. Nair and R.M. Ward, 2009: Meas. Sci. Technol. 20 (2009) 045701.

    Article  Google Scholar 

  20. B.G. Nair and R.M. Ward: Liquid Metal Processing and Casting 2009, Santa Fe, 20–23 September 2009, TMS, Warrendale, PA, 2009.

  21. Bojarevics V., Pericleous K., and Brooks R.: Metall. Trans. B 2009; 40B:328.

    Article  CAS  Google Scholar 

  22. Leenov D. and Kolin A: J. Chem. Phys., 1954, vol. 22 (4), pp. 683–88.

    Article  CAS  Google Scholar 

  23. Clift R., Grace J.R. and Weber M.E. : Bubbles, Drops, and Particles, Dover Publications, Mineola, NY, 2005, p. 381.

    Google Scholar 

  24. Yuan L, Lee PD (2010) Modeling Simul. Mater. Sci. Eng. 18:055008.

    Article  Google Scholar 

  25. Yuan L, Lee PD:Acta Mater., 60(12), 4917-4926, 2012.

    Article  CAS  Google Scholar 

  26. Wang W, Lee P D, McLean M (2003) Acta Mater. 51(10):2971-2987.

    Article  CAS  Google Scholar 

  27. Lee PD, Chirazi A, Atwood RC, and Wang W: Mat. Sci. Eng. A, 365(1-2), 57-65. 2004.

    Google Scholar 

  28. Xu X, Zhang W and Lee PD: Metal. Mater. Trans. A, 33(6), 1805-1815, 2002.

    Article  CAS  Google Scholar 

  29. Worster MG: J. Fluid Mechanics, 237(1992), 649.

    Article  CAS  Google Scholar 

  30. Clift R, Grace JR and Weber ME, Bubbles, Drops and Particles, Academic Press, 1978.

    Google Scholar 

  31. Xu, X., Ward, R.M., Jacobs, M.H., Lee, P.D. and McLean, M.: Met. Trans. A, 33A, 1795-1804, 2002.

    Article  CAS  Google Scholar 

  32. Ramirez J, CC Beckermann (2003) Metall. Mater. Trans. A, 34A:1525.

    Article  CAS  Google Scholar 

  33. Bernard, D., Nielsen, O., Salvo, L., Cloetens, P.: Mater. Sci. Eng. A 2005;392:112.

    Article  Google Scholar 

  34. Pollock, T. M., Murphy, W. H.: Metall. Trans. A 1996;27A:1081.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the EPSRC grants EP/D505011/1, EP/D505003/1, and EP/D50502X/1 for project support. LY and PDL would like to acknowledge the assistance provided by the Research Complex at Harwell, which was funded in part by the EPSRC grant (EP/I02249X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koulis Pericleous.

Additional information

Manuscript submitted August 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pericleous, K., Djambazov, G., Ward, M. et al. A Multiscale 3D Model of the Vacuum Arc Remelting Process. Metall Mater Trans A 44, 5365–5376 (2013). https://doi.org/10.1007/s11661-013-1680-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1680-4

Keywords

Navigation