Skip to main content
Log in

Chimney Formation in Solidifying Ga-25wt pct In Alloys Under the Influence of Thermosolutal Melt Convection

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The directional solidification of Ga-25wt pct In alloys within a Hele-Shaw cell under the influence of thermosolutal convection was observed by means of X-ray radioscopy. The unstable density stratification at the solidification front causes the formation of rising plumes containing solute-rich liquids. The development of the chimneys and the probability of their surviving depend sensitively on the spatial and temporal properties of the flow field. Variations of the vertical temperature gradient along the solidification cell lead to the observation of different mechanisms for chimney formation. Perturbations of the dendritic structure are the origin of development of segregation freckles in case of low temperature gradients. The long-term stabilities of these segregation channels are strongly influenced by the transient nature of the melt convection. The situation at higher temperature gradients is characterized by two dominating convection rolls in the liquid phase which are driven by a lateral temperature gradient and the convex shape of the solidification front. The penetration of this flow pattern into the mushy zone results in continuous accumulation of solute in the central part of the mushy zone followed by a remelting of the solid fraction and the occurrence of a stable chimney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Sample and A. Hellawell: Metall. Trans. A, 1984, vol. 15A, pp. 2163-73.

    CAS  Google Scholar 

  2. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861-71.

    CAS  Google Scholar 

  3. A. Hellawell, J.R. Sarazin, and R.S. Steube: Phil. Trans: Phys. Sci. Eng., 1993, vol. 345, pp. 507-544.

    Article  CAS  Google Scholar 

  4. S.N. Tewari and R. Shah: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1353-62.

    Article  CAS  Google Scholar 

  5. M.I. Bergman, D. R. Fearn, J. Bloxham, and M.C. Shannon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 859-66.

    CAS  Google Scholar 

  6. S.D. Felicelli, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 847-55.

    Article  CAS  Google Scholar 

  7. M.G. Worster: J. Fluid Mech., 1992, vol. 224, pp. 335-59.

    Article  Google Scholar 

  8. M.G. Worster: Ann. Rev. Fluid Mech., 1997, vol. 29, pp. 91-122.

    Article  Google Scholar 

  9. R. Trivedi, P. Mazumder, and S.N. Tewari: Metall. Mater. Trans. A. 2002, vol. 33A, pp. 3763-75.

    Article  CAS  Google Scholar 

  10. J. E. Spinelli, D.M. Rosa, I. L. Ferreira, and A. Garcia: Mat. Sci. Eng. A, 2004, vol. 383, pp. 271-82.

    Google Scholar 

  11. S. Boden. B. Willers, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 613-23.

    Article  CAS  Google Scholar 

  12. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193-2204.

    Article  CAS  Google Scholar 

  13. B.T. Murray, A.A. Wheeler, and M.E. Glicksman: J. Cryst. Growth, 1995, vol. 154, pp. 386-400.

    Article  CAS  Google Scholar 

  14. M. Zhang and T. Maxworthy: J. Fluid Mech., 2002, vol. 470, pp. 247-68.

    Article  CAS  Google Scholar 

  15. S.H. Whiteoak, H.E. Huppert, and M.G. Worster: J. Crystal Growth, 2008, vol. 310, pp. 3545-51.

    Article  CAS  Google Scholar 

  16. R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, and A. Snigirev: Phys. Rev. Lett., 1999, vol. 83, pp. 5062-65.

    Article  CAS  Google Scholar 

  17. R.H. Mathiesen and L. Arnberg: Acta Materialia, 2005, vol. 53, pp. 947-56.

    Article  CAS  Google Scholar 

  18. R.H. Mathiesen, L. Arnberg, K. Ramsoskar, T. Weitkamp, C. Rau, and A. Snigirev: Metall. Mater. Trans. A, 2002, vol. 33B, pp. 613-23.

    Google Scholar 

  19. N. Shevchenko, S. Boden, S. Eckert, and G. Gerbeth: IOP Conf. Series: Mater. Sci. Eng., 2011, vol. 27, 012085.

    Article  Google Scholar 

  20. J.N. Koster, T. Seidel, and R. Derebail: J. Fluid Mech. 1997, vol. 343, 29-41.

    Article  CAS  Google Scholar 

  21. J.N. Koster, R. Derebail, and A. Grötzbach: Appl. Phys. A, 1997, vol. 64, pp. 45-54.

    Article  CAS  Google Scholar 

  22. N. Shevchenko, S. Boden, S. Eckert, and G. Gerbeth: IOP Conf. Series: Mater. Sci. Eng., 2012, vol. 33, 012035.

    Article  Google Scholar 

  23. B.K.P. Horn and B.G. Schunck: Artificial Intelligence 1981, vol. 17, pp. 185-203.

    Article  Google Scholar 

  24. D. J. Tritton: Physical Fluid Dynamics, Van Nostrand Reinhold, 1977 (reprinted 1980), Section 22.7, The Coanda Effect.

  25. J.C. Ramirez and C. Beckermann: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 1525-36.

    Article  CAS  Google Scholar 

  26. P. Delaleau, C. Beckermann, R.H. Mathiesen and L. Arnberg : ISIJ International, 2010, vol. 50, pp. 1886-1894.

    Article  CAS  Google Scholar 

  27. J.A. Dantzig and M. Rappaz : Solidification, 2009, EPFL Press, Lausanne.

    Book  Google Scholar 

Download references

Acknowledgments

The current study was financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the form of the Collaborative Research Centre SFB 609: “Electromagnetic Flow Control in Metallurgy, Crystal Growth and Electrochemistry.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Shevchenko.

Additional information

Manuscript submitted November 16, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, N., Boden, S., Gerbeth, G. et al. Chimney Formation in Solidifying Ga-25wt pct In Alloys Under the Influence of Thermosolutal Melt Convection. Metall Mater Trans A 44, 3797–3808 (2013). https://doi.org/10.1007/s11661-013-1711-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1711-1

Keywords

Navigation