Skip to main content
Log in

Solidification Map of a Nickel-Base Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solidification behavior of the advanced nickel-base alloys, such as Inconel® Alloy 690, is important for understanding their microstructure, properties, and eventual service behavior in nuclear power plant components. Here, an experimental and theoretical program of research is undertaken with the aim of developing a quantitative understanding of the solidification behavior under a wide range of temperature gradients and solidification growth rates. The temperature gradient and solidification rates vary spatially by several orders of magnitude during keyhole mode laser welding. Therefore, the solidification structure is experimentally characterized from microscopic examinations of the resulting fusion zones and correlated with fundamental solidification parameters to provide a widely applicable solidification map that can be employed for a broad range of solidification processes. The cell and secondary dendrite arm spacings are quantitatively correlated with cooling rates. An Alloy 690 solidification map, which illustrates the effect of temperature gradient and solidification rate on the morphology and scale of the solidification structures, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q.Z. Zuo, F. Liu, L. Wang, and C. Chen: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3014-3027.

    Article  Google Scholar 

  2. F. Azarmi and C.P. Leither: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4703-4710.

    Article  Google Scholar 

  3. M. Xie, R. Helmink, and S. Tin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1259-1267.

    Article  Google Scholar 

  4. C.L. Brundidge, D. Vandrasek, B. Wang, and T.M. Pollock: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 965-976.

    Article  Google Scholar 

  5. T.D. Anderson, J.N. DuPont, and T. DebRoy: Acta Mater., 2010, vol. 58, pp. 1441-1454.

    Article  Google Scholar 

  6. T. Allen, J. Busby, M. Meyer, and D Petti: Mater. Today, 2010, vol. 13, pp.14-23.

    Article  Google Scholar 

  7. S. Fukumoto and W. Kurz: ISIJ Int., 1999, vol. 39, pp. 1270-1279.

    Article  Google Scholar 

  8. G. J. Abraham, R. Bhambroo, V. Kain, G.K. Dey, and V.S. Raja: J. Mater. Eng. Perform., 2013, vol. 22, pp. 427-432.

    Article  Google Scholar 

  9. S.-L. Jeng and Y.-H. Chang: Mater. Sci. Eng., A, 2012, vol. 555, pp. 1-12.

    Google Scholar 

  10. H.T. Lee and J.L. Wu: Corros. Sci., 2009, vol. 51, pp. 439-445.

    Article  Google Scholar 

  11. H.T. Lee and T.Y. Kou: Sci. Technol. Weld. Joining, 1999, vol. 4, pp. 246-256.

    Google Scholar 

  12. T.-Y. Kou, H.T. Lee, and C.C. Tu: Sci. Technol. Weld. Joining, 2003, vol. 8, pp. 39-48.

    Article  Google Scholar 

  13. T.-Y. Kou and H.-T. Lee: Mater. Sci. Eng., A, 2002, vol. 338, pp. 202-212.

    Article  Google Scholar 

  14. A. Raghavan, H. Wei, T.A. Palmer, and T. DebRoy: J. Laser Appl., 2013, vol. 25, art. no. 052006.

  15. S. Kou: Welding Metallurgy, 2 nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003.

    Google Scholar 

  16. W. Zhang, G.G. Roy, J.W. Elmer, and T. DebRoy; J. Appl. Phys., 2003, vol. 93, pp. 3022-3033.

    Article  Google Scholar 

  17. R. Rai, G.G. Roy, and T. DebRoy: J. Appl. Phys., 2007, vol. 101, art. no. 054909.

  18. R. Rai, J.W. Elmer, T.A. Palmer, and T. DebRoy: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 5753-5766.

    Article  Google Scholar 

  19. R. Rai, S.M. Kelly, R.P.Martukanitz, and T. DebRoy: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 98-112.

    Article  Google Scholar 

  20. T.D. Anderson, J.N. DuPont, and T. DebRoy: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 181-193.

    Article  Google Scholar 

  21. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  Google Scholar 

  22. M. Gaumann, R. Trivedi, and W. Kurz: Mater. Sci. Eng., A, 1997, vols. 226-228, pp. 763-769.

    Article  Google Scholar 

  23. M. Gaumann, C. Bezencon, P. Canalis, and W. Kurz : Acta Mater., 2001, vol. 49, pp. 1051-1062.

    Article  Google Scholar 

  24. W. Tan, N.S. Bailey, and Y.C. Shin: J. Manuf. Sci. Eng., 2012, vol. 134, 041010.

    Article  Google Scholar 

  25. W. Zhang, C.-H.Kim, and T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 5210-5219.

    Article  Google Scholar 

  26. H. Zhao and T. DebRoy: J. Appl. Phys., 2003, vol. 93, pp. 10089-10096.

    Article  Google Scholar 

  27. B. Ribic, R. Rai, and T. DebRoy: Sci. Technol. Weld. Joining, 2008, vol. 13, pp. 683-693.

    Article  Google Scholar 

  28. B. Ribic, S. Tsukamoto, R. Rai, and T. DebRoy: J. Phys. D, 2011, vol. 44, art. no. 485203.

  29. A. Kaplan: J. Phys. D: Appl. Phys.,1994, vol. 27, pp. 1805-1814.

    Article  Google Scholar 

  30. S. Krishnan and P.C. Nordine: J. Appl. Phys., 1996, vol. 80, pp. 1735-1742.

    Article  Google Scholar 

  31. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8 th. ed., Elsevier Butterworth-Heinemann, Burlington, VT, 2004.

    Google Scholar 

  32. Special Metals Corporation: INCONEL ® Alloy 690 Data Sheet, Publication Number SMC-079, 2009, http://www.specialmetals.com/documents/Inconel%20alloy%20690.pdf, Accessed 9 July 2013.

  33. L.B. Pakratz: Thermodynamic Properties of Elements and Oxides, U.S. Dept. of the Interior, Bureau of Mines, District of Columbia, 1982.

  34. Y.V. Glagoleva, N.B. Pushkareva, Y.E. Lapshova, O.V. Sadyreva, V.R. Polev, V.I. Gorbatov, S.G. Taluts, and I.G. Korshunov: Phys. Met. Metallography, 2006, vol. 102, pp. 48-54.

    Article  Google Scholar 

  35. M.A. Valiente-Bermejo, L. Karlsson, and T. DebRoy: 14th Nordic Laser Materials Processing Conference, 2013, pp. 3–14.

  36. W. Liu and J.N. Dupont: Acta Mater., 2004, vol. 52, pp. 4833-4847.

    Google Scholar 

  37. J.M. Vitek: Acta Mater., 2005, vol. 53, pp. 53-67.

    Article  Google Scholar 

  38. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3 rd ed., Trans Tech Publications, Brookfield, VT, 1989.

    Google Scholar 

  39. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol 34, pp. 213-245.

    Article  Google Scholar 

  40. S. Nikolic, A. Golubovic, V. Radojevic, A. Valcic, and B. Jordovic: Metalurgija – J. Metall., 2004, vol 10, pp. 289-293.

    Google Scholar 

  41. P. Nash: Alloy Phase Diagrams, Vol 3, ASM International, Materials Park, OH, 1991.

    Google Scholar 

  42. H.G. Kraus: Weld. J., 1987, vol 66, pp. S353-S359.

    Google Scholar 

  43. A. Paul and T. DebRoy: Metall. Trans. B, 1988, vol 19B, pp. 851-858.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jay Tressler and Mr. Ed Good for their assistance during the welding experiments and metallography. This research was performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs under Grant Number 120327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Blecher.

Additional information

Manuscript submitted August 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blecher, J.J., Palmer, T.A. & DebRoy, T. Solidification Map of a Nickel-Base Alloy. Metall Mater Trans A 45, 2142–2151 (2014). https://doi.org/10.1007/s11661-013-2149-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2149-1

Keywords

Navigation