Skip to main content
Log in

Ti Alloy with Enhanced Machinability in UAT Turning

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metastable β-titanium alloys such as Ti 15V 3Al 3Cr 3Sn are of great technological interest thanks to their high fatigue strength-to-density ratio. However, their high hardness and poor machinability increase machining costs. Additionally, formation of undesirable long chips increases the machining time. To address those issues, a metastable β-titanium alloy (Ti 15V 3Al 3Cr 2Zr 0.9La) with enhanced machinability was developed to produce short chips even at low cutting speeds. A hybrid ultrasonically assisted machining technique, known to reduce cutting forces, was employed in this study. Cutting force components and surface quality of the finished work-pieces were analyzed for a range of cutting speeds in comparison with those for more traditional Ti 15V 3Al 3Cr 3Sn. The novel alloy demonstrated slightly improved machining characteristics at higher cutting speeds and is now ready for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun, S., Brandt, M. and Dargusch, M.S.: International Journal of Machine Tools & Manufacture, 2009, vol. 49, pp. 561–568.

    Article  Google Scholar 

  2. M.J. Donachie: Titanium A Technical Guide, ASM International, Materials Park, OH, 2000.

    Google Scholar 

  3. C. Siemers, J. Laukart, B. Zahra, J. Rösler, Z. Spotz, and K. Saksl: Development of Advanced and Free-machining Alloys by Micrometer-Size Particle Precipitation, vol. 690, Materials Science Forum, Trans Tech Publications, Zurich, 2011, pp. 262–65.

    Google Scholar 

  4. G. Lütjering and J.C. Williams: Titanium, Springer Verlag, Berlin, 2003.

    Book  Google Scholar 

  5. N. Zlatin and M. Field: in 2nd Int. Conf. Titan. Sci. Technol., R.I. Jaffee and H.M. Burte, eds., Metallurgical Society of AIME, New York, 1973, p. 489.

  6. R. Komanduri and R.H. Brown: ASME J. Eng. Ind., 1981, vol. 103, pp. 33–51.

    Article  Google Scholar 

  7. P. Rokicki, K. Nowag, Z. Spotz, L. Fusova, K. Saks, R. Ghisleni, and C. Siemers: Rudy i metale nieželazne, 2010, vol. 55, pp. 452–56.

    Google Scholar 

  8. C. Siemers, F. Brunke, J. Laukart, M.S. Hussain, J. Rösler, K. Saksl, and B. Zahra: Proc. COM 2012, Niagara Falls, 2012.

  9. J. Rösler, M. Bäker, and C. Siemers: in High Speed Machining, H.-K. Tönshoff and F. Hollmann, eds., VCH-Wiley, Weinheim, 2005, pp. 492–514.

  10. G. Byrne and E. Scholta: CIRP Ann. Manuf. Technol., 1993. vol. 42–1, pp. 471–74.

    Article  Google Scholar 

  11. K. Weinert, I. Inasaki, J.W. Sutherland, and T. Wakabayashi: CIRP Ann. Manuf. Technol., 2004, vol. 53, pp. 511–37.

    Article  Google Scholar 

  12. F. Klocke and O. Rubenach: Ind. Diam. Rev., 2000, vol. 60, pp. 227–39.

    Google Scholar 

  13. J. Devine: Soc. Adv. Mater. Process Eng., 1979, vol. 10, pp. 485–96.

    Google Scholar 

  14. J. Kumabe, K. Fuchizawa, T. Soutome, and Y. Nishimoto: Precis. Eng. Nanotechnol., 1989, vol. 11, pp. 71–77.

    Article  Google Scholar 

  15. D. Brehl and T. Dow: Precis. Eng., 2008, vol. 32, pp. 153–72.

    Article  Google Scholar 

  16. V.I. Babitsky, A.V. Mitrofanov, and V.V. Silberschmidt: Ultrasonics, 2004, vol. 42, pp. 81–86.

    Article  Google Scholar 

  17. A. Maurotto, A. Roy, V.I. Babitsky, and V.V. Silberschmidt: Proc. 4th CIRP HPC (CIRPHPC2010), Gifu, Japan, 2010.

  18. A. Maurotto, A. Roy, V.I. Babitsky, and V.V. Silberschmidt: Solid State Phenom., 2012, vol. 188, pp. 330–38.

    Article  Google Scholar 

  19. M. Demiral, A. Roy, and V.V. Silberschmidt: Comput. Mater. Contin., 2010, vol. 19, pp. 199–216.

    Google Scholar 

  20. R. Muhammad, A. Maurotto, A. Roy, and V.V. Silberschmidt: Appl. Mech. Mater., 2011, vol. 70, pp. 315–20.

    Article  Google Scholar 

  21. V.K. Astashev and V.I. Babitsky: in Ultrasonic Processes and Machines, V.I. Babitsky and J. Wittenburg, eds., Springer, New York, 2007.

  22. A.R.C. Sharman, P. Bowen, and D.K. Aspinwall: Ultrasonic Assisted Turning of Gamma Titanium Aluminide, Rolls-Royce PLC, London, 2001.

    Google Scholar 

  23. E. Moreno, P. Acevedo, M. Fuentes, A. Sotomayor, L. Borroto, M.E. Villafuerte, and L. Leija: 2nd Int. Conf. Electr. Electron. Eng., 2005, pp. 393–95.

  24. A.I. Markov: Russ. Eng. Res., 1996, vol. 16, pp. 26–31.

    Google Scholar 

  25. Kistler: http://www.kistler.com/, Accessed March 2011.

  26. A. Joshi, and H.S. Hu: Surf. Coat. Technol., 1995, Vol. 76–77, pp. 499–507.

    Article  Google Scholar 

  27. SECO: SECO-Web Catalog [Online], http://ecat.secotools.com/, Accessed March 2011.

  28. M.S. Hussain, C. Siemers, and J. Rosler: J. Mater. Manuf. Process., 2013, vol. 28, pp. 545–49.

    Article  Google Scholar 

  29. B. Zahra, F. Depertori, C. Siemers, and J. Rösler: Proc. 12th World Conf. Titan. (Ti-2011), Beijing, China, 2011.

  30. A. Maurotto, R. Muhammad, A. Roy, and V.V. Silberschmidt: Ultrasonics, 2013, vol. 53, pp. 1242–50.

    Article  Google Scholar 

  31. T.H.C. Childs, D. Richings, and A.B. Wilcox: Int. J. Mech. Sci., 1972, vol. 14, pp. 359–68.

    Article  Google Scholar 

  32. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman: J. Mater. Process. Technol., 2002, vol. 123, pp. 133–45.

    Article  Google Scholar 

  33. F. Blaha and B. Langenecker: Naturwissenschaften, 1995, vol 77, p. 536.

    Google Scholar 

  34. B. Langenecker: IEEE Trans. Sonic Ultrason., 1966, vol. 13, pp. 1–8.

    Article  Google Scholar 

  35. S. Hong and Y. Ding: Int. J. Mach. Tools Manuf., 2001, vol. 41, pp. 1417–37.

    Article  Google Scholar 

  36. P.-J. Arrazola, A. Garay, L.-M. Iriarte, M. Armendia, S. Marya, and F. Le Maitre: J. Mater. Process. Technol., 2009, vol. 209, pp. 2223–30.

    Article  Google Scholar 

  37. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, 2003.

    Book  Google Scholar 

  38. B. Zahra, C. Siemers, T. Leemet, and J. Rösler: Proc. 8th Int. Adv. Met. Mater. Technol. Conf. (AMMT’2009), Saint Petersburg, Russia, 2009, vol. 1, pp. 461–68.

  39. R. Komanduri, and Z.B. Hou: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2301–995.

    Google Scholar 

  40. R. Wertheim, J. Rotberg, and A. Ber: CIRP Ann. Manuf. Technol., 1992, vol. 41, pp. 101–06.

    Article  Google Scholar 

Download references

Acknowledgments

Funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. PITN-GA-2008-211536, project MaMiNa, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Maurotto.

Additional information

Manuscript submitted September 28, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurotto, A., Siemers, C., Muhammad, R. et al. Ti Alloy with Enhanced Machinability in UAT Turning. Metall Mater Trans A 45, 2768–2775 (2014). https://doi.org/10.1007/s11661-014-2236-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2236-y

Keywords

Navigation