Skip to main content
Log in

A Phase-Field Model for the Diffusive Melting of Isolated Dendritic Fragments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A thermal phase-field model constructed in the “thin-interface” limit and incorporating a number of advanced numerical techniques such as adaptive mesh refinement, implicit time stepping, and a multigrid solver has been used to study the isolated diffusive melting of dendritic fragments. The results of the simulations are found to be fully consistent with the experimental observation of such melting in microgravity during the Isothermal Dendrite Growth Experiment. It is found that the rate at which the ratio of semi-major to semi-minor axes changes is a function of the melt Stefan number, which may help explain why both melting at (approximately) constant ratio and melting at slowly increasing ratio have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.E. Glicksman, A. Lupulescu and M.B. Koss: J. Thermophys. Heat Tr., 2003, vol. 17, p. 69.

    Article  Google Scholar 

  2. A. Lupulescu, M.E. Glicksman, and M.B. Koss: J. Cryst. Growth, 2005, vol. 276, p. 549.

    Article  Google Scholar 

  3. M.E. Glicksman: Proceedings of the 4th International Symposium on Physical Sciences in Space, Bonn-Bad Godesburg, Germany, July 2011 (J. Phys. Conf. Ser. 327, 012001).

  4. M.E. Glicksman, M.B. Koss, L.T. Bushnell, J.C. LaCombe, and E.A. Winsa: Adv. in Space Res., 1995, vol. 16, p. 181.

    Article  Google Scholar 

  5. M.B. Koss, J.C. LaCombe, L.A. Tennenhouse, M.E. Glicksman, and E.A. Winsa: Metall. Mater. Trans. A, 1999, vol. 30A, p. 3177.

    Article  Google Scholar 

  6. J.C. LaCombe, M.B. Koss, and M.E. Glicksman: Phys. Rev. Lett., 1999, vol. 83, p. 2997.

    Article  Google Scholar 

  7. Ivantsov GP. Doklady Akademii Nauk SSSR 1947; 58:567 (1947).

    Google Scholar 

  8. M.E. Glicksman, M.B. Koss, and E.A. Winsa: Phys. Rev. Lett., 1994, vol. 73, p. 573.

    Article  Google Scholar 

  9. J.C. LaCombe, M.B. Koss, and M.E. Glicksman: Metall. Mater. Trans. A, 2007, vol. 38A, p. 116.

    Article  Google Scholar 

  10. A. Karma and W-J. Rappel: Phys. Rev. E, 1996, vol. 53, p. R3017.

    Article  Google Scholar 

  11. A. Karma and W-J. Rappel: Phys. Rev. Lett., 1996, vol. 77, p. 4050.

    Article  Google Scholar 

  12. J. Rosam, Ph.D. Thesis, University of Leeds, 2007.

  13. J. Rosam, P.K. Jimack and A.M. Mullis: J. Comp. Phys., 2007, vol. 225, p. 1271.

    Article  Google Scholar 

  14. J. Rosam, P.K. Jimack and A.M. Mullis: Acta Mater., 2008, vol. 56, p. 4559.

    Article  Google Scholar 

  15. A.M. Mullis: Comp. Mater. Sci., 2006, vol. 36, p. 345.

    Article  Google Scholar 

  16. W. Hundsorfer & J.G. Verwer, Numerical Solution of Time-Dependant Advection-Diffusion-Reaction Equations, Springer, Berlin, 2003.

    Book  Google Scholar 

  17. U. Trottenberg, C. Oosterlee and A. Schuller, Multigrid, Academic Press, 2001.

    Google Scholar 

  18. A. Brandt: Math. Comp., 1977, vol. 31, p. 333.

    Article  Google Scholar 

  19. B. Echebarria, R. Folch, A. Karma, M. Plapp: Phys. Rev. E 2004, vol. 70 p. 061604.

    Article  Google Scholar 

  20. S.P. Marsh & M.E. Glicksman: Acta Mater. 1996, vol. 44, p. 3761.

    Article  Google Scholar 

  21. C. G. Goodyer, P. K. Jimack, A. M. Mullis, H. Dong, X. Yu: Adv. Appl. Math. Mech. 2012, vol. 4, p. 665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Mullis.

Additional information

Manuscript submitted March 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullis, A.M. A Phase-Field Model for the Diffusive Melting of Isolated Dendritic Fragments. Metall Mater Trans A 45, 3097–3102 (2014). https://doi.org/10.1007/s11661-014-2252-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2252-y

Keywords

Navigation