Skip to main content
Log in

Mechanical Properties Anisotropy of Cold-Rolled and Solution-Annealed Ni-Based Hastelloy C-276 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work describes a correlation among texture, in-plane anisotropy in tensile properties, and yield locus in Ni-based Hastelloy C-276 alloy. The alloy exhibits moderate values of in-plane anisotropy and anisotropy index, which has been attributed to the presence of moderate overall intensity of texture. The alloy displays two slopes in true plastic stress–strain curve and follows a Ludwigson relation. At low plastic strains, the sample displays the presence of annealing twins and less strain localization at grain boundaries, while the formation of deformation twins and high strain localization within the deformation twins and at the grain boundaries are observed in a high-strained region. The 45-deg and 67.5-deg orientation samples show relatively low ductility and low work-hardening exponent. This has been explained based on dislocation storage capacity and dynamic recovery coefficient using Kock–Mecking–Estrin analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.F. Bradley: Superalloys: A Technical Guide, ASM International, Materials Park, OH, 1988.

    Google Scholar 

  2. C.T. Sims: Superalloy II, Wiley, New York, NY, 1987.

    Google Scholar 

  3. M.J. Donachie: Superalloys, American Society for Metals, ASM International, Materials Park, OH, 1984.

    Google Scholar 

  4. M.J. Cieslak, T.J. Headley, and A.D. Romig, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 2035-47.

    Article  Google Scholar 

  5. J. Lu, E.S. Choi, and H.D. Zhou: J. Appl. Phys., 2008, vol. 103, pp. 64908-13.

    Article  Google Scholar 

  6. K. Ankamma, D.V.V. Satyanarayana, G.C.M. Reddy, M. Komaraiah, and N.E. Prasad: Sadhana, 2011, vol. 36, pp. 223-49.

    Article  Google Scholar 

  7. K. Ankamma, A.K. Singh, K.S. Prasad, G.C. M. Reddy, M. Komaraiah, and N.E. Prasad: Int. J. Mater. Res., 2011, vol. 102, pp. 1274-85.

    Article  Google Scholar 

  8. R.G. Wheeler and D.R. Ireland: Electrochem. Technol., 1966, vol. 4, pp. 313-7.

    Google Scholar 

  9. L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030-3.

    Article  Google Scholar 

  10. D. Lee and W.A. Backofen: Trans. AIME, 1966, vol. 236, pp. 1696-704.

    Google Scholar 

  11. D. Lee: in Science of Hardness Testing and its Research Applications, J.H. Westbrook and H. Conrad, eds., ASM International, Materials Park, OH, 1973, p. 147.

  12. F.J. Humphreys and M. Hatherly: Recrystallisation and Related Phenomena, Elsevier Ltd., Oxford, U.K., 2004.

    Google Scholar 

  13. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, Singapore, 1988.

    Google Scholar 

  14. R.J. Rioja and J. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3325-37.

    Article  Google Scholar 

  15. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2764-77.

    Article  Google Scholar 

  16. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol. 577, pp. 87-100.

    Article  Google Scholar 

  17. K.V. Jata, A.K. Hopkins, and R.J. Rioja: Mater. Sci. Forum, 1996, vols. 217-22, pp. 647-52.

    Article  Google Scholar 

  18. S. Banumathy, R.K. Mandal, and A.K. Singh: Int. J. Mater. Res., 2011, vol. 102, pp. 208-17.

    Article  Google Scholar 

  19. Y.T. Wu and C.H. Koo: Scripta Metall., 1998, vol. 38, pp. 267-71.

    Article  Google Scholar 

  20. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825-8.

    Article  Google Scholar 

  21. F.A. McClintock: J. Appl. Mech., 1968, vol. 90, pp. 363-71.

    Article  Google Scholar 

  22. C. Keller, E. Hug, and G. Chateigner: Mater. Sci. Eng. A, 2009, vol. 500, pp. 207-15.

    Article  Google Scholar 

  23. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, 171-273.

    Article  Google Scholar 

  24. M. Tiryakioglu and N.D. Alexopoulos: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2772-80.

    Article  Google Scholar 

  25. U.F. Kocks: J. Eng. Mater. Tech. Trans. ASME, 1976, vol. 98. pp. 76-85.

    Article  Google Scholar 

  26. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-75.

    Article  Google Scholar 

  27. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.

    Article  Google Scholar 

  28. U. Essmann and H. Mughrabi: Phil. Mag. A, 1979, vol. 40, pp. 731-56.

    Article  Google Scholar 

  29. T. Narutani and J. Takamura: Acta. Metall., 1991, vol. 39, pp. 2037-49.

    Article  Google Scholar 

  30. J.E. Flinn, D.P. Field, G.E. Korth, T.M. Lillo, and J. Macheret: Acta. Mater., 2001, vol. 49, pp. 2065-74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ministry of Defence, Government of India for financial support and Director, DMRL, Hyderabad for constant encouragement. We extend our thanks to Dr. T.K. Nandy and Shri S. Chawla for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Manuscript submitted September 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, K.K., Mukhopadhyay, P., Mandal, R.K. et al. Mechanical Properties Anisotropy of Cold-Rolled and Solution-Annealed Ni-Based Hastelloy C-276 Alloy. Metall Mater Trans A 45, 3493–3504 (2014). https://doi.org/10.1007/s11661-014-2294-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2294-1

Keywords

Navigation