Skip to main content

Advertisement

Log in

Creep Deformation of Allvac 718Plus

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep deformation behavior of Allvac 718Plus was studied over the temperature range of 923 K to 1005 K (650 °C to 732 °C) at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature–stress regime this alloy exhibits Class M-type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys, this gamma prime strengthened superalloy does not exhibit steady-state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common among the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non-Nb-bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.A. Loria, ed.: Superalloys 718,625,706 and Derivatives, TMS, Warrendale, PA, 2005.

  2. O. D. Sherby and P.M. Burke, Prog. Mater. Sci., Vol. 13, pp 325–90, (1968).

    Article  Google Scholar 

  3. A. K. Mukerjee, J. E. Bird and J. E. Dorn, Trans, ASM, Vol. 62, p. 155, (1969).

    Google Scholar 

  4. O. D. Sherby, Acta Metall., Vol. 10, pp. 135–47, (1962).

    Article  Google Scholar 

  5. J. Weertman, J. Appl. Phys., Vol. 28, p. 362, (1957).

    Article  Google Scholar 

  6. J. Weertman, J. Appl. Phys., Vol. 26, p. 1213, (1955).

    Article  Google Scholar 

  7. F.R.N. Nabarro: Report of a Conference on the Strength of Solids, Physical Society, London, 1948, p. 75.

  8. C. Herring, J, Appl. Phys., Vol. 21, p. 437, (1950).

    Article  Google Scholar 

  9. R. L. Coble, J. Appl. Phys., Vol. 34, p. 1679, (1963).

    Article  Google Scholar 

  10. T.G. Langdon and R.B. Vastava: Mechanical Testing for Deformation Model Development, R.W. Rhode and J.C. Swearengen, eds., ASTM, Philadelphia, PA, 1982, pp. 435–51.

  11. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, New York, 1982.

  12. G. B. Viswanathan, P. M. Sarosi, M. F. Henry, D. D. Whitis, W. W. Milligan and M. J. Mills, Acta Materialia, Vol. 53, pp. 3041–57, (2005).

    Article  Google Scholar 

  13. P. Caron, P. J. Henderson, T. Khan. And M. McLean, Scripta Metall., Vol. 20, p. 875, (1986).

    Article  Google Scholar 

  14. S. Sinharoy, P. VirroNic, and W.W. Milligan: Metall. Mater. Trans A, vol. 32A, pp. 2021–32 (2001).

    Article  Google Scholar 

  15. K. R. Williams and B. Wilshire, Metal. Sci. J., Vol. 9, p. 248, (1972).

    Google Scholar 

  16. B. Wilshire and M. T. Whittaker, Acta Materialia,Vol. 57, pp. 4115–24, (2009).

    Article  Google Scholar 

  17. J. Rosler, R. Joos and E. Arzt, Metall. Trans. A, Vol 23A, pp. 1521–39, (1992).

    Article  Google Scholar 

  18. B. F. Dyson and M. McLean, Acta. Metall., Vol. 31, pp. 17–27 (1983).

    Article  Google Scholar 

  19. B. F. Dyson and T. B. Gibbons, Acta. Metall., Vol. 35, pp. 2355–69 (1987).

    Article  Google Scholar 

  20. M. Kolbe: Mater. Sci. Eng., vol. 319–321, pp. 383–87 (2001).

    Article  Google Scholar 

  21. L. Kovarik, R.R. Unocic, Ju Li, P. Sarosi, C. Shen, Y. Wang and M. J. Mills, Progress in Materials Science, Vol. 54, pp. 839–73, (2009).

    Article  Google Scholar 

  22. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.C. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 377–85.

  23. N. Zhou, C. Shen, M. J. Mills, J. Li and Y. Wang, Acta Materialia, Vol. 59, pp. 3484–97, (2011).

    Article  Google Scholar 

  24. M. Sundararaman, P. Mukhopadhyay and S. Banerjee, Metall. Trans. A, Vol. 19A, pp. 453–65, (1988).

    Article  Google Scholar 

Download references

Acknowledgments

The Allvac 718Plus material used in this study was provided by Carlton Forge Works, Paramount, CA. The authors also wish to acknowledge the insightful comments and suggestions made by the reviewer which have resulted in a significant improvement of the manuscript. R.W.H. would also like to acknowledge conversations held with Dr. Eric Ott at GE Aviation regarding the initial testing parameters for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Hayes.

Additional information

Manuscript submitted June 4, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, R.W., Unocic, R.R. & Nasrollahzadeh, M. Creep Deformation of Allvac 718Plus. Metall Mater Trans A 46, 218–228 (2015). https://doi.org/10.1007/s11661-014-2564-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2564-y

Keywords

Navigation