Skip to main content
Log in

Study of Microsegregation and Laves Phase in INCONEL718 Superalloy Regarding Cooling Rate During Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Cooling rate is an important and controllable variable in casting processing. The effect of cooling rate on the microsegregation and Laves phase in INCONEL718 superalloy castings was studied by high-temperature–laser confocal scanning microscopy and quantitative metallography in this study. The transformation rate of solid phase with a feature of Gaussian distribution in the solidifications at the cooling rates of 0.10 to 14 K/s is acquired. The solidification time and secondary dendrite arm spacing (SDAS) as a function of cooling rate are analyzed. The amount of Laves phase presents a maximum value at a threshold cooling rate of 3 K/s owing to the opposite effects of cooling rate on the solidification time and SDAS. A modified dimensionless microsegregation index criterion was used for the scaling of solute segregation and Laves phase depending on cooling rates. The prediction of maximal microsegregation and the amount of Laves phase by MSI and experiments provide a guide for cooling rate control in the casting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. INCONEL718 is a trademark of Special Metals Corporation, Huntington, WV.

References

  1. http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf.

  2. D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–17.

    Article  Google Scholar 

  3. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    Article  Google Scholar 

  4. M.D. Kang, H.Y. Gao, J. Wang, L.S.B. Ling, and B.D. Sun: Materials, 2013, vol. 6, pp. 1789–1802.

    Article  Google Scholar 

  5. B. Seiser, R. Drautz, and D.G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749–63.

    Article  Google Scholar 

  6. N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang, M.J. Mills, and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270–86.

    Article  Google Scholar 

  7. G.A. Knorovsky, M.J. Cieslak, and T.J. Headley: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    Article  Google Scholar 

  8. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253–62.

    Article  Google Scholar 

  9. J.N. DuPont, C.V. Robino, and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 4781–90.

    Article  Google Scholar 

  10. L. Wang, Y. Yao, J. Dong, and Z. Maicang: Chem. Eng. Commun., 2010, vol. 197, pp. 1571–85.

    Article  Google Scholar 

  11. T.F. Bower, H.D. Brody, and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 624–33.

    Google Scholar 

  12. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–34.

    Article  Google Scholar 

  13. T. Antonsson and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 85–96.

    Article  Google Scholar 

  14. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1582–87.

    Article  Google Scholar 

  15. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4061–74.

    Article  Google Scholar 

  16. L. Nastac and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4075–83.

    Article  Google Scholar 

  17. H. Yin and T. Emi: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 483–93.

    Article  Google Scholar 

  18. D. Phelan, M. Reid, and R. Dippenaar: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 985–94.

    Article  Google Scholar 

  19. P.T. Jones, D. Desmet, M. Guo, D. Durinck, F. Verhaeghe, J.V. Dyck, J. Liu, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 3497–3507.

    Article  Google Scholar 

  20. M.M. Attallah, H. Terasaki, R.J. Moat, S.E. Bray, Y. Komizo, and M. Preuss: Mater. Characterization, 2011, vol. 62, pp. 760–67.

    Article  Google Scholar 

  21. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings: Trans. TMS-AIME, 1967, vol. 239.

  22. M.C. Flemings: Mater. Trans., 2005, vol. 46, 895–900.

    Article  Google Scholar 

  23. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3016–19.

    Article  Google Scholar 

  24. V.R. Voller: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 2047–52.

    Article  Google Scholar 

  25. J.L. Fife and P.W. Voorhees: Acta Mater., 2009, vol. 57, pp. 2418–28.

    Article  Google Scholar 

  26. Q. Du, D.G. Eskin, A. Jacot, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 1523–32.

    Article  Google Scholar 

  27. M. Paliwal and I.H. Jung: Acta Mater., 2013, vol. 61, pp. 4848–60.

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Shanghai Rising-Star Program (Grant No. 13QA1401800), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120073110007), and the Program for Science and Technology Development of Shanghai (Grant No. 11521100703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Han.

Additional information

Manuscript submitted June 23, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, L., Han, Y., Zhou, W. et al. Study of Microsegregation and Laves Phase in INCONEL718 Superalloy Regarding Cooling Rate During Solidification. Metall Mater Trans A 46, 354–361 (2015). https://doi.org/10.1007/s11661-014-2614-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2614-5

Keywords

Navigation