Skip to main content
Log in

Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2015

Abstract

Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.S. Gajapathi, S.K. Mitra and P.F. Mendez: Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 5545-5553.

    Article  Google Scholar 

  2. S.S. Al-bermani, M.L. Blackmore M.L., W. Zhang and I. Todd: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3422-3434.

    Article  Google Scholar 

  3. A. Simchi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 148-158.

    Article  Google Scholar 

  4. Q. Jia and D. Gu: J. Alloys Compd., 2014, vol. 585, pp. 713-721.

    Article  Google Scholar 

  5. S. Safdar, A.J. Pinkerton, L. Li, M.A. Sheikh and P.J. Withers: Appl. Math. Model., 2012, vol. 37, pp. 1187-1195.

    Article  Google Scholar 

  6. P. Mercelis and J.P. Kruth: Rapid Prototyping J., 2006, vol. 12, pp. 254 – 265.

    Article  Google Scholar 

  7. J. Grum and M. Žnidaršič: Mater. and Manuf. Processes, 2004, vol. 19, pp. 243-258.

    Article  Google Scholar 

  8. M.T. Hutchings, P.J. Withers, T.M. Holden and T. Lorentzen: Introduction to the characterization of residual stress by neutron diffraction, CRC Press, Boca Raton, FL, 2005, pp. 186-197.

    Google Scholar 

  9. P.J. Withers, M. Preuss, A. Steuwer, J.W.L. Pang: J. Appl. Crystallogr., 2007. vol. 40, pp. 891-904.

    Article  Google Scholar 

  10. A.D. Krawitz and R.A. Winholtz: Mater. Sci. Eng. A, 1994, vol. 185, pp. 123-130.

    Article  Google Scholar 

  11. M. Preuss, J.W.L. Pang, P.J. Withers and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3227-3234.

    Article  Google Scholar 

  12. N. Iqbal, J. Rolph, R. Moat, D. Hughes, M. Hofmann, J. Kelleher, G. Baxter, P.J. Withers and M. Preuss: Metall. Trans. A, 2011, vol. 42A, pp. 4056-4063.

    Article  Google Scholar 

  13. E.H. Kisi and C.J. Howard: Applications of Neutron Powder Diffraction. Oxford Univeristy Press, New York, NY, 2008, pp. 420-438.

    Book  Google Scholar 

  14. A. Strondl, S. Milenkovic, A. Schneider, U. Klement and G. Frommeyer: Adv. Eng. Mater., 2012, vol. 14, pp. 427-438.

    Article  Google Scholar 

  15. P. Rangaswamy, M.L. Griffith, M.B. Prime, T.M. Holden, R.B. Rogge, J.M. Edwards and R.J. Sebring: Mater. Sci. Eng. A, 2005, vol. 399, pp. 72-83.

    Article  Google Scholar 

  16. R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers and M. Preuss: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2288-2298.

    Article  Google Scholar 

  17. T. Gnaupel-Herold, J. Slotwinski and S. Molyan: AIP Conf. Proc., 2014, vol. 1581, pp.1205-1212.

    Article  Google Scholar 

  18. T.R. Watkins, H. Bilheux, K. An, A. Payzant, R. Dehoff, C. Duty, W. Peter, C. Blue and C. Brice: Adv. Mater. Processes, 2013, vol. 171, pp.23-27.

    Google Scholar 

  19. J. Rolph, N. Iqbal, M. Hoffman, A. Evans, M.C. Hardy, M.G. Glavicic and M. Preuss: J. Strain Anal. Eng. Des., 2014, vol. 48, pp. 221-228.

    Google Scholar 

  20. S. Spooner and X. Wang: J. Appl. Crystallogr., 1997, vol.30, pp. 449-455.

    Article  Google Scholar 

  21. K.A. Unocic, L.M. Kolbus, R.R. Dehoff, S.N. Dryepondt, and B.A. Pint: Corrosion, 2014, Paper No. 4478.

  22. K. Shah, I.U. Haq, A. Khan, S.A. Shah, M. Khan and A.J. Pinkerton: Mater. Des., 2014, vol. 54, pp. 531-538.

    Article  Google Scholar 

  23. W. Sames, K. Unocic, R.R. Dehoff, T. Lolla and S. S. Babu: J. Mater. Res., 2014, vol. 29, pp. 1920-1930.

    Article  Google Scholar 

  24. Y. Zhang, Z. Li, P. Nie and Y. Wu: Metall. Mater. Trans. A, 2013, vol 44A, pp. 708-716.

    Article  Google Scholar 

  25. J.W.L. Pang, T.M. Holden and T.E. Mason: Acta Metall., 1998, vol. 46, pp. 1503-1518.

    Google Scholar 

  26. T.M. Holden, R.A. Holt and C.N. Tome: Mater. Sci. Eng. A, 2000, vol. 282, pp.131-136.

    Article  Google Scholar 

  27. I.C. Noyan and J.B. Cohen: Residual Stress, Materials Research and Engineering, Springer-Verlag, Yorktown Heights, NY, 1987, pp. 52-53.

    Book  Google Scholar 

  28. Y. Tan, S. Shi, X. Guo, D. Jiang, W. Dong and S. Ren: Vacuum, 2013, vol. 89, pp. 12-16.

    Article  Google Scholar 

  29. A.A. Antonysamy: PhD Thesis, University of Manchester, Manchester, UK, 2012.

  30. K. Kempen, E. Yasa, L. Thijs, J.-P. Kruth, and J. Van Humbeeck: Phys. Proc., 2011, vol. 12m pp. 255-263.

  31. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.-P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303-3312.

    Article  Google Scholar 

  32. M.R. Daymond, C.N. Tome and M.A.M. Bourke: Mater. Sci. Forum, 2000, vol. 347-349, pp. 54-59.

    Article  Google Scholar 

  33. J.W. Signorelli, M.A. Bertinetti and P.A. Turner: Int. J. Plast., 2009, vol. 25, pp. 1-25.

    Article  Google Scholar 

  34. Y. Kizaki, H. Azuma, S. Yamazaki, H. Sugimoto, S. Takagi: Jpn. J. Apply. Phys., 1993, vol. 32, pp. 213-220.

    Article  Google Scholar 

  35. F. Liu, X. Lin, G. Yang, M. Song, J. Chen and W. Huang: Opt. Laser Technol., 2011, vol. 43, pp. 208-213.

    Article  Google Scholar 

Download references

Acknowledgments

Research at ORNL’s High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy. Research was also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at the Manufacturing Demonstration Facility and High Temperature Materials Laboratory at ORNL was sponsored by the Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. M. Lorentz and O. Ovichinnikova acknowledge support by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL), managed and operated by UT-Battelle, LLC. The authors would like to thank Alex Fima at Directed Manufacturing Inc., Fredrick List III and Tom Geer at Oak Ridge National Lab and Andrew Kolbus for their contributions to this work and the samples used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Sochalski-Kolbus.

Additional information

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Manuscript submitted June 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sochalski-Kolbus, L.M., Payzant, E.A., Cornwell, P.A. et al. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering. Metall Mater Trans A 46, 1419–1432 (2015). https://doi.org/10.1007/s11661-014-2722-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2722-2

Keywords

Navigation