Skip to main content

Advertisement

Log in

An Experimental Evaluation of the Gerdemann–Jablonski Compaction Equation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper reports on an attempt to independently evaluate the validity and applicability of a new compaction equation recently presented by Gerdemann and Jablonski [Metallurgical and Materials Transactions A, 42 (2011) 1325–1333] using experimental data. Furthermore, the rationality of Gerdemann and Jablonski’s interpretation of the equation parameters is examined. The results are discussed in terms of the comparative evaluation of four different titanium powders (sponge Ti, CP TiH2, Grade 2 CP Ti, and TiH2-SS316L nanocomposite blend prepared by high energy milling) cold pressed in die to compaction pressures of up to 1300 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Paronen and J. Llkka: in Pharmaceutical Powder Compaction Technology, G. Alderborn and C. Nystrom, eds. CRC Press, Florida, 1995, pp. 55–75.

  2. G. Bockstiegel, “Modern developments in powder metallurgy,” Proc. Int. Powder Met. Conf., vol. 1, pp. 155–187, 1966.

    Google Scholar 

  3. P. Y. Huang, Powder Metallurgy Principle. Beijing: Metallurgical Industry Press, 1982, pp. 373–374.

    Google Scholar 

  4. S. J. Gerdemann and P. D. Jablonski, “Compaction of Titanium Powders,” Metall. Mater. Trans. A, vol. 42A, pp. 1325–1333, Nov. 2011.

    Article  Google Scholar 

  5. F. H. Froes, S. J. Mashl, J. C. Hebeisen, V. S. Moxson, and V. A. Duz, “The technologies of titanium powder metallurgy,” JOM, vol. 56, no. 11, pp. 46–48, Nov. 2004.

    Article  Google Scholar 

  6. J. M. Sonnergaard, “Investigation of a new mathematical model for compression of pharmaceutical powders,” Eur. J. Pharm. Sci., vol. 14, no. 2, pp. 149–157, 2001.

    Article  Google Scholar 

  7. P. Adapa, L. Tabil, and G. Schoenau, “Compaction characteristics of barley, canola, oat and wheat straw,” Biosyst. Eng., vol. 104, no. 3, pp. 335–344, Nov. 2009.

    Article  Google Scholar 

  8. S. Mallick, “Rearrangement of particle and compactibility, tabletability and compressibility of pharmaceutical powder : A rational approach,” J. Sci. Indusctrial Res., vol. 73, no. January, pp. 51–56, 2014.

    Google Scholar 

  9. K. Katsuyoshi and W. Ryuzo, “Analysis of Warm Compaction Behavior of Iron Powder Particles via Cooper-Eaton Equation,” Trans. JWRI, vol. 35, no. 2, pp. 47–51, 2006.

    Google Scholar 

  10. A. R. Cooper and L. E. Eaton, “Compaction behavior of several ceramic powders,” J. Am. Ceram. Soc., vol. 45, no. 3, pp. 97–101, 1962.

    Article  Google Scholar 

  11. D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, and R. Narayanasamy, “Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes,” Powder Technol., vol. 258, no. 0, pp. 189–197, May 2014.

    Article  Google Scholar 

  12. P. J. Denny, “Compaction equations: a comparison of the Heckel and Kawakita equations,” Powder Technol., vol. 127, no. 2, pp. 162–172, Oct. 2002.

    Article  Google Scholar 

  13. M. Qian, “Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication,” Int. J. Powder Metall., vol. 46, no. 5, pp. 29–44, 2010.

    Google Scholar 

  14. R. Frykholm and H. Vidarsson: “Ti Alloys in PM Applications”, in World Congress PM2014 in Orlando, 2014.

  15. W. Chen, Y. Yamamoto, W. H. Peter, M. B. Clark, S. D. Nunn, J. O. Kiggans, T. R. Muth, C. A. Blue, J. C. Williams, and K. Akhtar, “The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders,” J. Alloys Compd., vol. 541, pp. 440–447, Nov. 2012.

    Article  Google Scholar 

  16. A. Jimoh, I. Sigalas, and M. Hermann, “Densification of titanium (Ti) from titanium hydride (TiH2) powder through dehydrogenation and pressureless sintering Process,” J. Sci. Technol. Math. Educ., vol. 7, no. 2, pp. 42–52, 2011.

    Google Scholar 

  17. P. G. Esteban, Y. Thomas, E. Baril, E. M. Ruiz-Navas, and E. Gordo, “Study of compaction and ejection of hydrided-dehydrided titanium powder,” Met. Mater. Int., vol. 17, no. 1, pp. 45–55, Feb. 2011.

    Article  Google Scholar 

  18. S.-T. Hong, Y. Hovanski, C. A. Lavender, and K. S. Weil, “Investigation of Die Stress Profiles During Powder Compaction Using Instrumented Die,” J. Mater. Eng. Perform., vol. 17, no. 3, pp. 382–386, Apr. 2008.

    Article  Google Scholar 

  19. S. Chikosha, T. C. Shabalala, and H. K. Chikwanda, “Effect of particle morphology and size on roll compaction of Ti-based powders,” Powder Technol., vol. 264, pp. 310–319, Sep. 2014.

    Article  Google Scholar 

  20. E. M. Borisovskaya, V. A. Nazarenko, Y. N. Podrezov, O. S. Koryak, Y. I. Evich, and V. F. Gorban, “Mechanical properties of powder titanium at different production stages. I. Densification curves for titanium powder billets,” Powder Metall. Met. Ceram., vol. 47, no. 7–8, pp. 406–413, 2008.

    Article  Google Scholar 

  21. J. B. Lim, C. J. Bettles, B. C. Muddle, and N. K. Park, “Effects of Impurity Elements on Green Strength of Powder Compacts,” Mater. Sci. Forum, vol. 654–656, pp. 811–814, Jun. 2010.

    Article  Google Scholar 

  22. K.K. Sobiyi: Machining Of Powder Metal Titanium, University of Stellenbosch, 2011.

  23. J. Lou and B. Gabbitas: in International Titanium Powder Processing, Consolidation and Metallurgy Conference, 2013.

  24. ASTM D7481—09 Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder, Book of Standards Volume: 04.09. ASTM International, West Conshohocken, PA, 2009.

  25. Test Methods Used During Development or Manufacture: Bulk Density and Tapped Density of Powders, Supplementary Information in The International Pharmacopoeia, 4th Edition. WHO, Geneva, Switzerland, 2014.

  26. O. V Tsodikov and M. T. Record, “General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Esigma70 RNA polymerase and lambdaP(R) promoter DNA.,” Biophys. J., vol. 76, no. 3, pp. 1320–29, Mar. 1999.

    Article  Google Scholar 

  27. H. Motulsky and A. Christopoulos: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting, Oxford University Press, 2004, pp. 317–19.

  28. Z.-G. Mei, S.-L. Shang, Y. Wang, and Z.-K. Liu, “Density-functional study of the thermodynamic properties and the pressure–temperature phase diagram of Ti,” Phys. Rev. B, vol. 80, no. 10, p. 104116, Sep. 2009.

    Article  Google Scholar 

  29. N. Velisavljevic, S. MacLeod, and H. Cynn: in Titanium AlloysTowards Achieving Enhanced Properties for Diversified Applications, A.K.M.N. Amin, ed. InTech, 2012, pp. 67–86.

  30. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced alpha to omega transition in titanium metal: a systematic study of the effects of uniaxial stress,” Phys. B Condens. Matter, vol. 355, no. 1–4, pp. 116–125, Jan. 2005.

    Article  Google Scholar 

  31. D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, and J. Wilkins, “A New Mechanism for the Alpha to Omega Martensitic Transformation in Pure Titanium,” Phys. Rev. Lett., vol. 91, no. 2, p. 025701, Jul. 2003.

    Article  Google Scholar 

  32. J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray, L. Wang, W. Utsumi, S. Hiroyuki, and H. Takanori, “Experimental constraints on the phase diagram of titanium metal,” J. Phys. Chem. Solids, vol. 69, no. 10, pp. 2559–2563, Oct. 2008.

    Article  Google Scholar 

  33. V. Dmitriev, L. Dubrovinsky, T. Bihan, A. Kuznetsov, H.-P. Weber, and E. Poniatovsky, “Collapsed hexagonal ω phase in a compressed TiZr alloy: Angle-dispersive synchrotron-radiation X-ray diffraction study,” Phys. Rev. B, vol. 73, no. 9, p. 094114, Mar. 2006.

    Article  Google Scholar 

  34. N. Endo, H. Saitoh, A. Machida, Y. Katayama, and K. Aoki, “Phase diagram and equation of state of TiH2 at high pressures and high temperatures,” J. Alloys Compd., vol. 546, pp. 270–274, Jan. 2013.

    Article  Google Scholar 

  35. I. O. Bashkin, V. K. Fedotov, H.-J. Hesse, A. Schiwek, W. B. Holzapfel, and E. G. Ponyatovsky, “An in situ structural study of the high-pressure transformations in TiH0.74,” J. Phys. Condens. Matter, vol. 14, no. 5, pp. 955–966, Feb. 2002.

    Google Scholar 

  36. P. E. Kalita, A. L. Cornelius, K. E. Lipinska-Kalita, C. L. Gobin, and H. Peter Liermann: J. Phys. Chem. Solids, vol. 69, no. 9, pp. 2240–2244, 2008.

    Article  Google Scholar 

  37. S. G. MacLeod, B. E. Tegner, H. Cynn, W. J. Evans, J. E. Proctor, M. I. McMahon, and G. J. Ackland, “Experimental and theoretical study of Ti-6Al-4V to 220 GPa,” Phys. Rev. B, vol. 85, no. 22, p. 224202, Jun. 2012.

    Article  Google Scholar 

  38. E. Huang, W. A. Bassett, and P. Tao: in High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto, vol. 39, M.H. Manghnani and Y. Syono, eds. Washington, D. C.: American Geophysical Union, 1987, pp. 165–72.

  39. R. G. Hennig, D. R. Trinkle, J. Bouchet, S. G. Srinivasan, R. C. Albers, and J. W. Wilkins, “Impurities block the alpha to omega martensitic transformation in titanium,” Nat. Mater., vol. 4, no. 2, pp. 129–133, Feb. 2005.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Thembinkosi Shabalala—for his contribution during the preparation of the mechanically blended powder—and to Jeff Benson—for his comments on the early versions of this paper. The contributions of Chris Machio and Silethelwe Chikosha especially are gratefully recognized. This research has been financially supported by the Department of Science and Technology through the Titanium Centre of Competence research program and the Council for Scientific and Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Machaka.

Additional information

Manuscript submitted September 2, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machaka, R., Chikwanda, H.K. An Experimental Evaluation of the Gerdemann–Jablonski Compaction Equation. Metall Mater Trans A 46, 2194–2200 (2015). https://doi.org/10.1007/s11661-015-2793-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2793-8

Keywords

Navigation