Skip to main content
Log in

High-Temperature Tensile Flow Behavior of Caliber-Rolled Mg-3Al-1Zn Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mg-3Al-1Zn (AZ31) alloy was caliber rolled isothermally in the temperature range of 523 K to 723 K (250 °C to 450 °C) to develop fine grains of 3 to 13 µm. Tensile tests by constant initial strain rate as well as differential strain rate test techniques were conducted over the temperature range of 493 K to 723 K (220 °C to 450 °C) and strain rate range of 10−5 to 10−1 s−1. Maximum tensile elongation of 182 pct was obtained at test temperature of 723 K (450 °C) and strain rate of 10−3 s−1 in the sample obtained from caliber rolling at 723 K (450 °C), in spite of its large grain size of 13 µm. The strain rate sensitivity index ‘m’ was found to vary from 0.08 to 0.33 and activation energy for deformation ‘Q’ varied from 30 to 185 kJ mol−1 depending on test condition and caliber-rolling condition. These variations in m and Q values are explained by the difference in prior grain size, texture, and twins developed as a function of caliber-rolling temperature, and further by the concomitant microstructural change occurring during tensile test itself. The presence of twins and orientation of grains influences the parameters of the constitutive relation to varying extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. E. Friedrich and B. L. Mordike: Magnesium Technology, Metallurgy, Design Data Applications, Springer Berlin Heidelberg New York, 2006, pp. 63-92.

    Google Scholar 

  2. C. Blawert, N. Hort, and K. U. Kainer: Trans. Indian Inst. Met., 2004, vol. 57, pp. 397-408.

    Google Scholar 

  3. Q. Miao, L. Hu, G. Wang, and E. Wang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6694-6701.

    Article  Google Scholar 

  4. X. Huang, G. Haung, D. Xiao, and Q. Liu: Mater. Sci. Forum, 2011, vol. 686, pp. 40-45.

    Article  Google Scholar 

  5. W. Xia, Z. Chen, D. Chen, and S. Zhu: J. Mater. Process. Technol., 2009, vol. 209, pp. 26-31.

    Article  Google Scholar 

  6. L. Guo, Z. Chen, and L. Gao: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8537-45.

    Article  Google Scholar 

  7. T. Mukai, H. Somekawa, T. Inoue, and A. Singh: Scripta Mater., 2010, vol. 62, pp. 113-16.

    Article  Google Scholar 

  8. T. Inoue, F. Yin, and Y. Kimura: Mater. Sci. Eng. A, 2007, vol. 466, pp. 114-22.

    Article  Google Scholar 

  9. Y. Q. Cheng, Z. H. Chen, W. J. Xia, and T. Zhou: J. Mater. Eng. Per., 2008, vol. 17, pp. 15-19.

    Article  Google Scholar 

  10. M.M. Avedesian and H. Baker: Magnesium and Magnesium Alloys, ASM Speciality Handbook, ASM International, The Materials Information Society, 1999, pp. 274–75.

  11. T. G. Langdon: J. Mater. Sci., 2009, vol. 44, pp. 5998-6010.

    Article  Google Scholar 

  12. R.L. Doiphode, S. V. S. Narayan Murty, N. Prabhu, and B.P. Kashyap: Solid State Phenomena, 2014, vol. 209, pp. 6-9.

    Article  Google Scholar 

  13. X. Yang, H. Miura, and T. Sakai: Mater. Sci. Forum, 2004, vols. 467-470, pp. 531-36.

    Article  Google Scholar 

  14. J. Koike, Y. Sato, and D. Ando: Mater. Trans., 2008, vol. 49, pp. 2792-2800.

    Article  Google Scholar 

  15. A. Jain, O. Duygulu, D. W. Brown, C. N. Tome, and S. R. Agnew: Mater. Sci. Eng. A, 2008, vol. 486, pp. 545-55.

    Article  Google Scholar 

  16. M. R. Barnett, C. H. J. Davies, and X. Ma: Scripta Mater., 2005, vol. 52, pp. 627-32.

    Article  Google Scholar 

  17. M. R. Barnett and N. Stanford: Scripta Mater., 2007, vol. 57, pp. 1125-28.

    Article  Google Scholar 

  18. P. G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169-94.

    Article  Google Scholar 

  19. N. Munroe and X. Tan: Scripta Mater., 1997, vol. 36, pp. 1383-86.

    Article  Google Scholar 

  20. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Mater. Trans., 2003, vol. 44, pp. 445-51.

    Article  Google Scholar 

  21. M. R. Barnett: Mater. Sci. Forum, 2009, vols. 618-619, pp. 227-32.

    Article  Google Scholar 

  22. H. Wang, P. D. Wu, and M. Gharghouri: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3588-94.

    Article  Google Scholar 

  23. M. A. Meyers, O. Vohringer, and V. A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025-39.

    Article  Google Scholar 

  24. J. W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.

    Article  Google Scholar 

  25. N. Ecob and B. Ralph: J. Mater. Sci., 1983, vol. 18, pp. 2419-29.

    Article  Google Scholar 

  26. Y. Chino, K. Kimura, and M. Mabuchi: Acta Mater., 2009, vol. 57, pp. 1476-85.

    Article  Google Scholar 

  27. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  28. G. Gottstein, H. Mecking, and D. Zabardjadi: Proc. Int. Conf. Strength Met. Alloys, 1976, vol. 3, pp. 1126–34.

  29. N. Li, G. Huang, X. Zhong, and Q. Liu: Materials and Design, 2013, vol. 50, pp. 382–91.

    Article  Google Scholar 

  30. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, vol. 43, Pergamon Press, Oxford, 1995, p. 327.

  31. R.L. Doiphode, S.V.S. Narayan Murty, N. Prabhu, and B.P. Kashyap: J. Magnes. Alloys, 2013, vol. 1, pp. 169–75.

  32. H. Frost and M. Ashby: Deformation Mechanism Maps, vol. 43, Pergamon Press, Oxford, 1982, pp. 20–29.

  33. Y. V. R. K. Prasad: J. Mater. Eng. Per., 2003, vol. 12, pp. 638-45.

    Article  Google Scholar 

  34. F. Kang, Z. Lee, J. T. Wang, P. Cheng, and H. Y. Wu: J. Mater. Sci., 2012, vol. 47, pp. 7854-59.

    Article  Google Scholar 

  35. R. L. Doiphode, R. P. Kulkarni, S. V. S. Narayan Murty, N. Prabhu, and B. P. Kashyap: Mater. Sci. Forum, 2013, vol. 735, pp. 327-31.

    Article  Google Scholar 

  36. T. Furushima, T. Shimizu, and K. Manabe: Mater. Sci. Forum, 2010, vols. 654-656, pp. 735-38.

    Article  Google Scholar 

  37. R. B. Figueiredo and T. G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7366-71.

    Article  Google Scholar 

  38. D. L. Yin, K. F. Zhang, G. F. Wang, and W. B. Han: Mater. Letters, 2005, vol. 59, pp. 1714-18.

    Article  Google Scholar 

  39. X. Wu and Y. Liu: Scripta Mater., 2002, vol. 46, pp. 269-74.

    Article  Google Scholar 

  40. J. C. Tan and M. J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 81-89.

    Article  Google Scholar 

  41. B. H. Lee, K. S. Shin, and C. S. Lee: Mater. Sci. Forum, 2005, vols. 475-479, pp. 2927-30.

    Article  Google Scholar 

  42. S. Sun, M. Zhang, W. He, J. Zhou, and G. Sun: Adv. Mater. Res., 2010, vols. 139-141, pp. 545-48.

    Article  Google Scholar 

  43. Y. V. R. K. Prasad and K. P. Rao: Mater. Sci. Eng. A, 2006, vol. 432, pp. 170-77.

    Article  Google Scholar 

  44. S. M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and M. Haghshenas: Mater. Sci. Eng. A, 2008, vol. 497, pp. 438-44.

    Article  Google Scholar 

  45. L. Wang, G. Huang, Y. Fan, Z. Lu, and F. Pan: J. Wuhan Univ. Technol. Mater. Sci., 2006, vol. 21, pp. 15-17.

    Article  Google Scholar 

  46. J. Tan and M. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 124-32.

    Article  Google Scholar 

  47. R. Panicker, A. H. Chokshi, R. K. Mishra, R. Verma, and P. E. Krajewski: Acta Mater., 2009, vol. 57, pp. 3683-93.

    Article  Google Scholar 

  48. F. K. Abu-Farha and M. K. Khraisheh: J. Mater. Eng. Per., 2007, vol. 16, pp. 192-99.

    Article  Google Scholar 

  49. K. Tsuzuki, H. Xiaoxu, and T. Maki: Acta Mater., 1996, vol. 44, pp. 4491–99.

    Article  Google Scholar 

  50. D. Pellegrini, A. Ghiotti, and S. Bruschi: Int. J. Mater. Forum, 2011, vol. 4, pp. 155-61.

    Article  Google Scholar 

  51. X. Zhong, G. Huang, F. He, and Q. Liu: Mater. Sci. Forum, 2011, vol. 686, pp. 219-24.

    Article  Google Scholar 

  52. H. Watanabe and M. Fukusumi: Mater. Sci. Eng. A, 2008, vol. 477, pp. 153-61.

    Article  Google Scholar 

  53. J. A. Del Valle, F. Penalba, and O. A. Ruano: Mater. Sci. Eng. A, 2007, vol. 467, pp. 165-71.

    Article  Google Scholar 

  54. S. H. Kang, Y. S. Lee, and J. H. Lee: J. Mater. Process. Technol., 2008, vol. 201, pp. 436-40.

    Article  Google Scholar 

  55. R. B. Figueiredo and T. G. Langdon: Mater. Sci. Eng. A, 2009, vol. 501, pp. 105-14.

    Article  Google Scholar 

  56. D. Zhang, F. Xiong, W.-W. Zhang, C. Qiu, and W. Zhang: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1911-16.

    Article  Google Scholar 

  57. H. Sakamoto, Y. Ohbuchi, H. Kuramae, and J. Shi: Adv. Mater. Res., 2011, vol. 337, pp. 701-04.

    Article  Google Scholar 

  58. K. A. Padmanabham and G. J. Davies: Superplasticity, Springer Berlin Heidelberg, New York, 1980, pp. 30-38.

    Book  Google Scholar 

  59. C. Barrett and T. Massalski: Structure of Metals, Crystallographic Methods, Principles and Data, 3rd ed., International Series on Materials Science and Technology, 1980, pp. 407–12.

  60. M. R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 1-7.

    Article  Google Scholar 

  61. N. Ecob and B. Ralph: J. Mater. Sci., 1983, vol. 18, pp. 2419-29.

    Article  Google Scholar 

  62. Y. N. Wang and J. C. Huang: Mater. Chem. Ph., 2003, vol. 81, pp. 11-26.

    Article  Google Scholar 

  63. B. P. Kashyap and G. S. Murty: Metall. Trans. A, 1982, vol. 13A, pp. 53-58.

    Article  Google Scholar 

  64. B.P. Kashyap and A.K. Mukherjee: Superplasticity, B. Baudelet and M. Suery, eds., CNRS Paris, 1985, pp. 4.1–4.34.

  65. J. W. Edington: Metall. Trans. A, 1982, vol. 13A, pp. 703-15.

    Article  Google Scholar 

  66. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 1999, pp. 163–77.

  67. B.P. Kashyap and A.K. Mukherjee: Scripta Metall., 1982, vol. 16, pp. 541-46.

    Article  Google Scholar 

  68. Frank Czerwinski: Magnesium AlloysDesign, Processing and Properties, InTech, Rijeka, Croatia, 2011, p. 270.

    Book  Google Scholar 

  69. M. Zelin and A. K. Mukherjee: Acta Metall. Mater., 1995, vol. 43, pp. 2359-62.

    Article  Google Scholar 

  70. A. Arieli and A. K. Mukherjee: Mater. Sci. Eng., 1980, vol. 45, pp. 61-70.

    Article  Google Scholar 

  71. T. G. Langdon: Metals forum, 1981, vol. 4, pp. 14-23.

    Google Scholar 

  72. T. G. Langdon: Metall. Trans. A, 1982, vol. 13A, pp. 689-701.

    Article  Google Scholar 

Download references

Acknowledgment

We express our thanks to DST for funding under FIST program SR/FST/ETII-054/2000 for purchase of Universal Testing Machine and high-temperature test facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kashyap.

Additional information

Manuscript submitted February 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doiphode, R.L., Narayana Murty, S.V.S., Prabhu, N. et al. High-Temperature Tensile Flow Behavior of Caliber-Rolled Mg-3Al-1Zn Alloy. Metall Mater Trans A 46, 3028–3042 (2015). https://doi.org/10.1007/s11661-015-2883-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2883-7

Keywords

Navigation