Skip to main content
Log in

Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α + β)] Phase-Boundary Slopes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and (α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si − 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [β/(α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young’s moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Welsch, R. Boyer, and E.W. Collings, eds.: in Materials Properties Handbook: Titanium Alloy, ASM, Materials Park, OH, 1994.

  2. M. Atapour, A.L. Pilchak, G.S. Frankel, and J.C. Williams: Mater. Sci. Eng. C, 2011, vol. 39, pp. 885-91.

    Article  Google Scholar 

  3. B.S. Hickman: J. Mater. Sci., 1969, vol. 4, pp. 554-63.

    Article  Google Scholar 

  4. M.H. Loretto, A. Huang, D. Hu, and X.H. Wu: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1480-85.

    Article  Google Scholar 

  5. M. Salib, J. Teixeira, L. Germain, E. Lamielle, N. Gey, and E. Aeby-Gautier: Acta Mater., 2013, vol. 61, pp. 3758-68.

    Article  Google Scholar 

  6. M. Tane, T. Nakano, S. Kuramoto, M. Niinomi, N. Takesue, and H. Nakajima: Acta Mater., 2013, vol. 61, pp. 139-50.

    Article  Google Scholar 

  7. K. Wang: Mater. Sci. Eng. A, 1996, vol. 213, 134-7.

    Article  Google Scholar 

  8. A. Schuh, J. Bigoney, W. Hönle, G. Zeiler, U. Holzwarth, and R. Forst: Mat. wissu Werkstofftech, 2007, vol. 38, 1003-7.

    Article  Google Scholar 

  9. L.J. Huang: Thesis, Beijing Institute of Aeronautical Material, 2006.

  10. D.Q. Martins, W.R. Osório, M.E.P. Souza, R. Caram, and A. Garcia: Electrochimica Acta, 2008, vol. 53, 2809-17.

    Article  Google Scholar 

  11. M. Niinomi: Biomaterials, 2003, vol. 24, pp. 2673-83.

    Article  Google Scholar 

  12. M. Niinomi: Mater. Sci. & Eng. A, 1998, vol. 243, 231-6.

    Article  Google Scholar 

  13. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma: Science, 2003, vol. 300, 464-7.

    Article  Google Scholar 

  14. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu and R. Yang: Appl. Phys. Lett., 2005, vol. 87, 091906-8.

    Google Scholar 

  15. P.J. Bania, ed.: in Beta Titanium Alloys in the 1990s, TMS, Warrendale PA, 1993.

  16. M. Morinaga, N. Yukawa, and H. Adachi: J. Phys. Sco. Jpn., 1984, vol. 53, pp. 653-63.

    Article  Google Scholar 

  17. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244-49.

    Article  Google Scholar 

  18. Y.A. Bagaryatskiy, G.I. Nosova, and T.V. Tagunova: Soviet Phvs., 1959, vol. 3, pp. 1014-17.

    Google Scholar 

  19. E.W. Collings, ed.: in Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, 1984.

  20. Q. Wang, C.J. Ji, Y.M. Wang, J.B. Qiang, and C. Dong: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1872-79.

    Article  Google Scholar 

  21. Y.B. Zhou, ed.: in Titanium Alloy Casting, Aviation Industry Press, Beijing, 2000.

  22. J.L. Murray, ed.: in Phase Diagrams of Binary Titanium Alloys, ASM, Materials Park, 1987.

  23. L. Hao, S. J. Li, S. Y. Sun, and R. Yang: Mater. Sci. Eng. A, 2006, vol. 441, pp. 112-18.

    Article  Google Scholar 

  24. Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, and X. Yang: Mater. Sci. Eng. A, 2012, vol. 536, pp. 197-206.

    Article  Google Scholar 

  25. A. Takeuchi, and A. Inoue: Mater. Trans. JIM, 2000, vol. 41, pp. 1372-78.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51171035, 11174044, and 51131002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wang or Peter K. Liaw.

Additional information

Manuscript submitted August 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Dong, C. & Liaw, P.K. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α + β)] Phase-Boundary Slopes. Metall Mater Trans A 46, 3440–3447 (2015). https://doi.org/10.1007/s11661-015-2923-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2923-3

Keywords

Navigation