Skip to main content

Advertisement

Log in

Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-model Comparison Study of Compaction Equations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A brief background to compaction equations and their application to titanium powder is presented. The behavior and mechanisms of densification in selected titanium powders is critically analyzed by means of a comprehensive inter-model comparison of existing compaction equations. The results are discussed in terms of the comparative evaluation of cold uniaxial compaction tests of sponge Ti, CP TiH2, CP Grade 2 Ti, and TiH2-SS316L nanocomposite powder samples, which were conducted at applied compaction pressures of up to 1250 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Froes, F. H., Mashl, S. J., Hebeisen, J. C., Moxson, V. S. & Duz, V. A. The technologies of titanium powder metallurgy. JOM 56, 46–48 (2004).

    Article  Google Scholar 

  2. Qian, M. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. Int. J. Powder Metall. 46, 29–44 (2010).

    Google Scholar 

  3. Enneti, R. K., Lusin, A., Kumar, S., German, R. M. & Atre, S. V. Effects of lubricant on green strength, compressibility and ejection of parts in die compaction process. Powder Technol. 233, 22–29 (2013).

    Article  Google Scholar 

  4. Panelli, R., Filho, F. A. & Ambrozio Filho, F. A study of a new phenomenological compacting equation. Powder Technol. 114, 255–61 (2001).

    Article  Google Scholar 

  5. R.M. German: Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, Princeton, 2005.

    Google Scholar 

  6. E.M. Borisovskaya, V.A. Nazarenko, Y.N. Podrezov, O.S. Koryak, Y.I. Evich, and V.F. Gorban: Powder Metall. Met. Ceram. 47, 406–13 (2008).

    Article  Google Scholar 

  7. Lim, J. B., Bettles, C. J., Muddle, B. C. & Park, N. K. Effects of Impurity Elements on Green Strength of Powder Compacts. Mater. Sci. Forum 654-656, 811–14 (2010).

    Article  Google Scholar 

  8. Chikosha, S., Shabalala, T. C. & Chikwanda, H. K. Effect of particle morphology and size on roll compaction of Ti-based powders. Powder Technol. 264, 310–19 (2014).

    Article  Google Scholar 

  9. Jimoh, A., Sigalas, I. & Hermann, M. Densification of titanium (Ti) from titanium hydride (TiH2) powder through dehydrogenation and pressureless sintering Process. J. Sci. Technol. Math. Educ. 7, 42–52 (2011).

    Google Scholar 

  10. K.K. Sobiyi: MSc Dissertation, University of Stellenbosch, 2011.

  11. Esteban, P. G., Thomas, Y., Baril, E., Ruiz-Navas, E. M. & Gordo, E. Study of compaction and ejection of hydrided-dehydrided titanium powder. Met. Mater. Int. 17, 45–55 (2011).

    Article  Google Scholar 

  12. Gerdemann, S. J. & Jablonski, P. D. Compaction of Titanium Powders. Metall. Mater. Trans. A 42, 1325–33 (2010).

    Google Scholar 

  13. R. Frykholm and H. Vidarsson: Ti Alloys in PM Applications, World Congress PM2014 in Orlando, USA MPFI, 2014.

  14. W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, and K. Akhtar: J. Alloys Compd. 541, 440–47 (2012).

    Article  Google Scholar 

  15. Gronostajski, Z., Bandoła, P. & Skubiszewski, T. Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V. Arch. Civ. Mech. Eng. 9, 47–57 (2009).

    Article  Google Scholar 

  16. W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, and K. Akhtar: Powder Technol. 214, 194–99 (2011).

    Article  Google Scholar 

  17. Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau, and W.H. Peter: Key Eng. Mater. 436, 103–111 (2010).

    Article  Google Scholar 

  18. D.F. Khan, H. Yin, H. Li, X. Qu, M. Khan, S. Ali, and M.Z. Iqbal: Mater. Des. 50, 479–83 (2013).

    Article  Google Scholar 

  19. Hong, S.-T., Hovanski, Y., Lavender, C. A. & Weil, K. S. Investigation of Die Stress Profiles During Powder Compaction Using Instrumented Die. J. Mater. Eng. Perform. 17, 382–86 (2008).

    Article  Google Scholar 

  20. Neves, R. G., Ferrari, B., Sanchez-Herencia, A. J. & Gordo, E. Colloidal approach for the design of Ti powders sinterable at low temperature. Mater. Lett. 107, 75–78 (2013).

    Article  Google Scholar 

  21. Lou, J., Gabbitas, B. & Zhang, D. Improving the uniformity in mechanical properties of a sintered Ti compact using a trace amount of internal lubricant. J. Mater. Process. Technol. 214, 1798–1805 (2014).

    Article  Google Scholar 

  22. J. Lou and B. Gabbitas: International Titanium Powder Processing, Consolidation and Metallurgy Conference TiDA, 2013.

  23. D.P. Mondal, J. Datta Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta: Mater. Des. 34, 82–89 (2012).

    Article  Google Scholar 

  24. Laptev, A., Vyal, O., Bram, M., Buchkremer, H. P. & Stöver, D. Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metall. 48, 358–64 (2005).

    Article  Google Scholar 

  25. Machaka, R. & Chikwanda, H. K. An Experimental Evaluation of the Gerdemann–Jablonski Compaction Equation. Metall. Mater. Trans. A 46, 2194–2200 (2015).

    Article  Google Scholar 

  26. Walker, E. E. The properties of powders. Part VI. The compressibility of powders. Trans. Faraday Soc. 19, 73–82 (1923).

    Article  Google Scholar 

  27. Bal’shin, M. Y. Contribution to the theory of powder metallurgical processes. Vestn. Met. 18, 124–47 (1938).

    Google Scholar 

  28. Bockstiegel, G. Modern developments in powder metallurgy. Proc. Int. Powder Met. Conf. 1, 155–87 (1966).

    Google Scholar 

  29. Denny, P. J. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 127, 162–72 (2002).

    Article  Google Scholar 

  30. Fischmeister, H. F. & Arzt, E. Densification of powders by particle deformation. Powder Metall. 26, 82–86 (1983).

    Article  Google Scholar 

  31. W.D. Jones: Fundamental Principles of Powder Metallurgy, Edward Arnold Publishers Ltd., London, 1960.

    Google Scholar 

  32. Heckel, R. W. Density-pressure relationships in powder compaction. Trans. Met. Soc. AIME 221, 671–75 (1961).

    Google Scholar 

  33. Panelli, R. & Ambrozio Filho, F. Compaction equation and its use to describe powder consolidation behaviour. Powder Metall. 41, 131–X (1998).

    Article  Google Scholar 

  34. Ge, R. D. Constitutive model for hot pressing of powders. J. Mater. Sci. Technol. 10, 374–380 (1994).

    Google Scholar 

  35. Shapiro, I. Compaction of powders X. Development of a general compaction equation. in Advances in Powder Metallurgy and Particulate Materials 3, 229–43 (1993).

    Google Scholar 

  36. Kawakita, K. & Lüdde, K.-H. Some considerations on powder compression equations. Powder Technol. 4, 61–68 (1971).

    Article  Google Scholar 

  37. Adams, M. J. & McKeown, R. Micromechanical analyses of the pressure-volume relationship for powders under confined uniaxial compression. Powder Technol. 88, 155–63 (1996).

    Article  Google Scholar 

  38. Van der Zwan, J. & Siskens, C. A. M. The compaction and mechanical properties of agglomerated materials. Powder Technol. 33, 43–54 (1982).

    Article  Google Scholar 

  39. Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V. K. & Kumar, V. Evaluation of compaction equations and prediction using adaptive neuro-fuzzy inference system on compressibility behavior of AA 6061(100−x) - x wt% TiO2 nanocomposites prepared by mechanical alloying. Powder Technol. 209, 124–37 (2011).

    Article  Google Scholar 

  40. Cooper, A. R. & Eaton, L. E. Compaction behavior of several ceramic powders. J. Am. Ceram. Soc. 45, 97–101 (1962).

    Article  Google Scholar 

  41. R.M. German and S.J. Park: Mathematical Relations in Particulate Materials Processing, Wiley, Hoboken, 2008. doi: 10.1002/9780470370087.

    Book  Google Scholar 

  42. Liu, X., Hu, L. & Wang, E. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes. J. Alloys Compd. 551, 682–87 (2013).

    Article  Google Scholar 

  43. P.Y. Huang: Powder Metallurgy Principle, Metallurgical Industry Press, Beijing, 1982.

    Google Scholar 

  44. Sonnergaard, J. M. Investigation of a new mathematical model for compression of pharmaceutical powders. Eur. J. Pharm. Sci. 14, 149–57 (2001).

    Article  Google Scholar 

  45. Hafizpour, H. R., Simchi, A. & Parvizi, S. Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations. Adv. Powder Technol. 21, 273–78 (2010).

    Article  Google Scholar 

  46. Ahamed, H. & Senthilkumar, V. Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3/Al2O3 particles. Mater. Charact. 62, 1235–49 (2011).

    Article  Google Scholar 

  47. Katsuyoshi, K. & Ryuzo, W. Analysis of Warm Compaction Behavior of Iron Powder Particles via Cooper-Eaton Equation. Trans. JWRI 35, 47–51 (2006).

    Google Scholar 

  48. Abdoli, H., Salahi, E., Farnoush, H. & Pourazrang, K. Evolutions during synthesis of Al-AlN-nanostructured composite powder by mechanical alloying. J. Alloys Compd. 461, 166–72 (2008).

    Article  Google Scholar 

  49. Adapa, P., Tabil, L. & Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 104, 335–44 (2009).

    Article  Google Scholar 

  50. Mallick, S. Rearrangement of particle and compactibility, tabletability and compressibility of pharmaceutical powder : A rational approach. J. Sci. Indusctrial Res. 73, 51–56 (2014).

    Google Scholar 

  51. Jeyasimman, D., Sivaprasad, K., Sivasankaran, S. & Narayanasamy, R. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technol. 258, 189–97 (2014).

    Article  Google Scholar 

  52. P. Paronen and J. Llkka: in Pharmaceutical Powder Compaction Technology, G. Alderborn and C. Nystrom, eds., CRC Press, New York, 1995, pp. 55–75. DOI:10.1201/b14207-4.

  53. ASTM D7481—09 Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder. 04.09, 2009. DOI:10.1520/D7481-09.

  54. Test Methods used During Development or Manufacture: Bulk Density and Tapped Density of Powders. Supplementary Information in The International Pharmacopoeia, 4th ed., 2014. http://www.who.int/medicines/publications/pharmacopoeia/en/.

  55. Abdoli, H., Farnoush, H., Salahi, E. & Pourazrang, K. Study of the densification of a nanostructured composite powder: Part 1: Effect of compaction pressure and reinforcement addition. Mater. Sci. Eng. A 486, 580–84 (2008).

    Article  Google Scholar 

  56. Sivasankaran, S., Sivaprasad, K., Narayanasamy, R. & Iyer, V. K. An investigation on flowability and compressibility of AA 6061(100−x)-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 201, 70–82 (2010).

    Article  Google Scholar 

  57. Sonnergaard, J. M. A critical evaluation of the Heckel equation. Int. J. Pharm. 193, 63–71 (1999).

    Article  Google Scholar 

  58. Razavi Hesabi, Z., Hafizpour, H. R. & Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A 454-455, 89–98 (2007).

    Article  Google Scholar 

  59. Asgharzadeh, H., Simchi, A. & Kim, H. S. A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O3 nanocomposite powder. Powder Technol. 211, 215–20 (2011).

    Article  Google Scholar 

  60. Phani, K. K. & Sanyal, D. A new approach for estimation of Poisson’s ratio of porous powder compacts. J. Mater. Sci. 42, 8120–25 (2007).

    Article  Google Scholar 

  61. Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–37 (2011).

    Article  Google Scholar 

  62. DeLo, D. P., Dutton, R. E. & Semiatin, S. L. A comparison of discrete element model predictions to observations of metal powder consolidation. Scripta Mater. 40, 1103–09 (1999).

    Article  Google Scholar 

  63. S.L. Semiatin, R.E. Dutton, and S. Shamasundar: in Processing and Fabrication of Advanced Materials IV, vol. 39, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, 1996).

    Google Scholar 

  64. Martin, L. P., Hodge, A. M. & Campbell, G. H. Compaction behavior of uniaxially cold-pressed Bi–Ta composites. Scripta Mater. 57, 229–32 (2007).

    Article  Google Scholar 

  65. Klevan, I., Nordström, J., Bauer-Brandl, A. & Alderborn, G. On the physical interpretation of the initial bending of a Shapiro-Konopicky-Heckel compression profile. Eur. J. Pharm. Biopharm. 71, 395–401 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The contributions of Chris Machio, Silethelwe Chikosha, and Thembinkosi Shabalala are gratefully recognized. The work was financially supported by the Council for Scientific and Industrial Research and the Department of Science and Technology (RSA) through the Titanium Centre of Competence research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Machaka.

Additional information

Manuscript submitted November 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machaka, R., Chikwanda, H.K. Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-model Comparison Study of Compaction Equations. Metall Mater Trans A 46, 4286–4297 (2015). https://doi.org/10.1007/s11661-015-3038-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3038-6

Keywords

Navigation