Skip to main content

Advertisement

Log in

Theoretical Investigation of Stabilizing Mechanism by Boron in Body-Centered Cubic Iron Through (Fe,Cr)23(C,B)6 Precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Fukuda: J. Jpn. Soc. Mech. Eng., 2011, vol. 114, pp. 244–47. (in Japanese).

    Google Scholar 

  2. H. Kushima, K. Kimura, and F. Abe: Tetsu-to-Hagane, 1999, vol. 85, pp. 841–47. (in Japanese).

    Google Scholar 

  3. H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3084–94.

    Article  Google Scholar 

  4. J. Hald and L. Korcakova: ISIJ Int., 2003, vol. 43, pp. 420–27.

    Article  Google Scholar 

  5. K.H. Kuo and C.L. Jia: Acta Metall., 1985, vol. 33, pp. 991–96.

    Article  Google Scholar 

  6. A. Kipelova, A. Belyakov, and R. Kaibyshev: Philos. Mag., 2013, vol. 93, pp. 2259–68.

    Article  Google Scholar 

  7. K. Maruyama, K. Sawada, and J. Koike: ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  Google Scholar 

  8. N. Takahashi, T. Fujita, and T. Yamada: Tetsu-to-Hagane, 1975, vol. 61, pp. 2263–73 (in Japanese).

  9. M. Tabuchi, H. Hongo, and F. Abe: Metall. Mater. Trans. A, 204, vol. 45A, pp. 5068–75.

    Article  Google Scholar 

  10. M. Hättestrand and H.-O. Andrén: Mater. Sci. Eng. A, 1999, vol. 270, pp. 33–37.

    Article  Google Scholar 

  11. M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, J. Kinugawa, and F. Abe: ISIJ Int., 2001, vol. 41, pp. S126–30.

    Article  Google Scholar 

  12. S. Hashimoto, S. Doi, K. Takahashi, M. Terasaka, and M. Iwaki: Mater. Sci. Eng. A, 1987, vol. 90, pp. 119–25.

    Article  Google Scholar 

  13. M.F. Ashby, J. Harper, and J. Lewis: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 413–20.

    Google Scholar 

  14. C.L. Briant and R.P. Messmer, Philos. Mag. B, 1980, vol. 42, pp. 569–76.

    Article  Google Scholar 

  15. R.P. Messmer and C.L. Briant: Acta Metall., 1982, vol. 30, pp. 457–67.

    Article  Google Scholar 

  16. S. Crampin, D.D. Vvedensky, J.M. MacLaren, and M.E. Eberhart: Phys. Rev. B, 1989, vol. 40, pp. 3413–16.

    Article  Google Scholar 

  17. J.R. Rice and J.-S. Wang: Mater. Sci. Eng. A, 1989, vol. 107, pp. 23–40.

    Article  Google Scholar 

  18. G.L. Krasko and G.B. Olson: Solid State Commun., 1990, vol. 76, pp. 247–51.

    Article  Google Scholar 

  19. R. Wu, A.J. Freeman, and G.B. Olson: J. Mater. Res., 1992, vol. 7, pp. 2403–11.

    Article  Google Scholar 

  20. R. Wu, A.J. Freeman, and G.B. Olson: Science, vol. 265, pp. 376–80.

    Article  Google Scholar 

  21. R. Wu, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 1994, vol. 50, pp. 75–81.

    Article  Google Scholar 

  22. R. Wu, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 1996, vol. 53, pp. 7504–09.

    Article  Google Scholar 

  23. C.M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, and H.W. Zandbergen: Phys. Rev. Lett., 2010, vol. 105, pp. 055503 (4pp)

  24. C.M. Fang, M.A. van Huis, M.H.F. Sluiter, and H.W. Zandbergen: Acta Mater., 2010, vol. 58, pp. 2968–77.

    Article  Google Scholar 

  25. N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva: Comput. Mater. Sci., 2015, vol. 96, pp. 159–64.

    Article  Google Scholar 

  26. J.Y. Xie, N.X. Chen, L.D. Tang, and S. Seetharaman: Acta Mater., 2005, vol. 53, pp. 5305–12.

    Article  Google Scholar 

  27. M. Yamaguchi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 319–329.

    Article  Google Scholar 

  28. S-.Y. Wang, C.-Y. Wang, D.-L. Zhao: J. Alloys Compds., 2004, vol. 368, pp. 308–11.

    Article  Google Scholar 

  29. J. Hartford: Phys. Rev. B, 2000, vol. 61, pp. 2221–29.

    Article  Google Scholar 

  30. H. Sawada, S. Taniguchi, K. Kawakami, and T. Ozaki: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, 045012 (12pp)

  31. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.

    Article  Google Scholar 

  32. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  Google Scholar 

  33. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.

    Article  Google Scholar 

  34. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, vol. 54, pp. 11169–86

  35. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  Google Scholar 

  36. A. Masago, K. Shirai, and H. Katayama-Yoshida: Phys. Rev. B, 2006, vol. 73, 104102 (10pp)

  37. M.J. van Setten, M.A. Uijttewaal, G.A. de Wijs, R.A. de Groot: J. Am. Chem. Soc., 2007, vol. 129, pp. 2458–65.

    Article  Google Scholar 

  38. M. Widom, M. Mihalkovič: Phys. Rev. B, 2008, vol. 77, 064113 (8pp)

  39. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard: Phys Rev. Lett., 1990, vol. 65, pp. 353–56.

    Article  Google Scholar 

  40. S.-H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger: Phys Rev. B, 1990, vol. 42, pp. 9622–49.

    Article  Google Scholar 

  41. A. van de Walle, and G. Ceder: J. Phase. Eq., 2002, vol. 23, pp. 348–59.

    Article  Google Scholar 

  42. A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu: Calphad J., 2013, vol. 42, pp. 13–18.

    Article  Google Scholar 

  43. R. Sahara, S. Emura, S. Ii, S. Ueda, and K. Tsuchiya: Sci. Technol. Adv. Mater., 2014, vol. 15, 035014 (9pp)

  44. R. Sahara, S. Emura, and K. Tsuchiya: J. Alloys Compd., 2015, vol. 634, pp. 193–99.

    Article  Google Scholar 

Download references

Acknowledgments

The calculations in this study were performed on Numerical Materials Simulator at NIMS. The authors also thank the staff of the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University for their support in using the Hitachi SR-16000 supercomputing facilities. This work was partially supported by JSPS KAKENHI Grant Number 15H04117 and the A-USC Technology Development Project supported by a grant from the Ministry of Economy, Trade, and Industry of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Sahara.

Additional information

Manuscript submitted June 14, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahara, R., Matsunaga, T., Hongo, H. et al. Theoretical Investigation of Stabilizing Mechanism by Boron in Body-Centered Cubic Iron Through (Fe,Cr)23(C,B)6 Precipitates. Metall Mater Trans A 47, 2487–2497 (2016). https://doi.org/10.1007/s11661-016-3397-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3397-7

Keywords

Navigation