Skip to main content
Log in

Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ε-Martensite, and Mn Concentration

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To obtain a basic understanding of hydrogen embrittlement associated with ε-martensite, we investigated the tensile behavior of binary Fe-Mn alloys with high Mn content under cathodic hydrogen charging. We used Fe-20Mn, Fe-28Mn, Fe-32Mn, and Fe-40Mn alloys. The correlation between the microstructure and crack morphology was clarified through electron backscatter diffraction measurements and electron channeling contrast imaging. ε-martensite in the Fe-20Mn alloy critically deteriorated the resistance to hydrogen embrittlement owing to transformation to α′-martensite. However, when ε-martensite is stable, hydrogen embrittlement susceptibility became low, particularly in the Fe-32Mn alloys, even though the formation of ε-martensite plates assisted boundary cracking. The Fe-40Mn alloys, in which no martensite forms even after fracture, showed higher hydrogen embrittlement susceptibility compared to the Fe-32Mn alloy. Namely, in Fe-Mn binary alloys, the Mn content has an optimal value for hydrogen embrittlement susceptibility because of the following two reasons: (1) The formation of stable ε-martensite seems to have a positive effect in suppressing hydrogen-enhanced localized plasticity, but causes boundary cracking, and (2) an increase in Mn content stabilizes austenite, suppressing martensite-related cracking, but probably decreases the cohesive energy of grain boundaries, causing intergranular cracking. As a consequence, the optimal Mn content was 32 wt pct in the present alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. [1] L. Remy and A. Pineau: Mater. Sci. Eng., 1977, 28, pp. 99-107.

    Article  Google Scholar 

  2. [2] B.C. De Cooman, O. Kwon and K.G. Chin: Mater. Sci. Tech-Lond., 2012, 28, pp. 513-27.

    Article  Google Scholar 

  3. [3] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, 15, pp. 141-68.

    Article  Google Scholar 

  4. D. Raabe, H. Springer, I. Gutierrez-Urrutia, F. Roters, M. Bausch, J.B. Seol, M. Koyama, P.P. Choi and K. Tsuzaki: JOM, 2014, 66, pp. 1845-56.

    Article  Google Scholar 

  5. [5] T. Sawaguchi, P. Sahu, T. Kikuchi, K. Ogawa, S. Kajiwara, A. Kushibe, M. Higashino and T. Ogawa: Scr. Mater., 2006, 54, pp. 1885-90.

    Article  Google Scholar 

  6. [6] T. Sawaguchi, L.G. Bujoreanu, T. Kikuchi, K. Ogawa, M. Koyama and M. Murakami: Scr. Mater., 2008, 59, pp. 826-29.

    Article  Google Scholar 

  7. [7] I. Nikulin, T. Sawaguchi and K. Tsuzaki: Mater. Sci. Eng. A, 2013, 587, pp. 192-200.

    Article  Google Scholar 

  8. [8] T. Sawaguchi, I. Nikulin, K. Ogawa, K. Sekido, S. Takamori, T. Maruyama, Y. Chiba, A. Kushibe, Y. Inoue and K. Tsuzaki: Scr. Mater., 2015, 99, pp. 49-52.

    Article  Google Scholar 

  9. [9] M. Koyama, T. Sawaguchi and K. Tsuzaki: ISIJ Int., 2012, 52, pp. 161-63.

    Article  Google Scholar 

  10. [10] M. Koyama, T. Sawaguchi and K. Tsuzaki: Metall. Mater. Trans. A, 2012, 43, pp. 4063-74.

    Article  Google Scholar 

  11. [11] M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee and K. Tsuzaki: Mater. Sci. Eng. A, 2011, 528, pp. 7310-16.

    Article  Google Scholar 

  12. [12] M. Koyama, T. Sawaguchi and K. Tsuzaki: Mater. Trans., 2015, 56, pp. 819-25.

    Article  Google Scholar 

  13. K. Tsuzaki and M. Koyama: Eur. Congr. Exhib. Adv. Mater. Processes, Warsaw, 2015.

  14. [14] L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa: Acta Mater., 2008, 56, pp. 3414-21.

    Article  Google Scholar 

  15. [15] D. Eliezer, D.G. Chakrapani, C.J. Altstetter and E.N. Pugh: Metall. Trans. A, 1979, 10, pp. 935-41.

    Article  Google Scholar 

  16. [16] Y.S. Chun, J.S. Kim, K.-T. Park, Y.-K. Lee and C.S. Lee: Mater. Sci. Eng. A, 2012, 533, pp. 87-95.

    Article  Google Scholar 

  17. [17] K. Yamada, M. Koyama, T. Kaneko and K. Tsuzaki: Scr. Mater., 2015, 105, pp. 54-57.

    Article  Google Scholar 

  18. [18] V.N. Shivanyuk, J. Foct and V.G. Gavriljuk: Scr. Mater., 2003, 49, pp. 601-06.

    Article  Google Scholar 

  19. [19] H. Nakatsu and S. Takaki: Nippon Kinzoku Gakkaishi (Japan), 1996, 60, pp. 141-48.

    Google Scholar 

  20. [20] S. Takaki, T. Furuya and Y. Tokunaga: ISIJ Int., 1990, 30, pp. 632-38.

    Article  Google Scholar 

  21. [21] Y. Tomota, M. Strum and J.W. Morris: Metall. Trans. A, 1986, 17, pp. 537-47.

    Article  Google Scholar 

  22. [22] X. Zhang, T. Sawaguchi, K. Ogawa, F. Yin and X. Zhao: J. Alloys Compd., 2013, 577, pp. S533-37.

    Article  Google Scholar 

  23. [23] H. Schumann: J. Kristall Technik, 1974, 10, pp. 1141-50.

    Article  Google Scholar 

  24. [24] V. Bliznuk, V. Gavriljuk, B. Shanina, A. Konchits and S. Kolesnik: Acta Mater., 2003, 51, pp. 6095-103.

    Article  Google Scholar 

  25. [25] V. Gavriljuk, V. Bliznuk, B. Shanina and S. Kolesnik: Mater. Sci. Eng. A, 2005, 406, pp. 1-10.

    Article  Google Scholar 

  26. [26] S.-J. Lee, J. Kim, S.N. Kane and B.C.D. Cooman: Acta Mater., 2011, 59, pp. 6809-19.

    Article  Google Scholar 

  27. [27] M. Koyama, T. Sawaguchi and K. Tsuzaki: Philos. Mag., 2012, 92, pp. 3051-63.

    Article  Google Scholar 

  28. K. Chan, L. Chen, T. Lui: Mater. Trans. JIM, 1997, 38, pp. 420-26.

    Article  Google Scholar 

  29. [29] J.-B. Seol, J. Jung, Y. Jang and C. Park: Acta Mater., 2013, 61, pp. 558-78.

    Article  Google Scholar 

  30. [30] P. Adler, G. Olson and W. Owen: Metall. Mater. Trans. A, 1986, 17, pp. 1725-37.

    Article  Google Scholar 

  31. [31] Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, 12, pp. 749-59.

    Article  Google Scholar 

  32. [32] L. Chen, H.-S. Kim, S.-K. Kim and B. De Cooman: ISIJ Int., 2007, 47, pp. 1804-12.

    Article  Google Scholar 

  33. [33] G.B. Olson and M. Cohen: Metall. Trans. A, 1975, 6, pp. 791-95.

    Article  Google Scholar 

  34. [34] T. Inamura, K. Takashima and Y. Higo: Philos. Mag., 2003, 83, pp. 935-54.

    Article  Google Scholar 

  35. [35] J.H. Ryu, S.K. Kim, C.S. Lee, D.-W. Suh and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2013, 469, 20120458.

    Article  Google Scholar 

  36. [36] M. Koyama, E. Akiyama, K. Tsuzaki and D. Raabe: Acta Mater., 2013, 61, pp. 4607-18.

    Article  Google Scholar 

  37. [37] M. Koyama, E. Akiyama, T. Sawaguchi, K. Ogawa, I.V. Kireeva, Y.I. Chumlyakov and K. Tsuzaki: Corros. Sci., 2013, 75, pp. 345-53.

    Article  Google Scholar 

  38. [38] M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama and D. Raabe: Int. J. Hydrogen Energy, 2014, 39, pp. 4634-46.

    Article  Google Scholar 

  39. [39] M. Koyama, E. Akiyama and K. Tsuzaki: Corros. Sci., 2012, 59, pp. 277-81.

    Article  Google Scholar 

  40. [40] K. Takai and R. Watanuki: ISIJ Int., 2003, 43, pp. 520-26.

    Article  Google Scholar 

  41. [41] M. Koyama and K. Tsuzaki: ISIJ Int., 2015, 55, pp. 2269-71.

    Article  Google Scholar 

  42. [42] K. Tsuzaki, K. Fukuda, M. Koyama and H. Matsunaga: Scripta Mater., 2016, 113, pp. 6-9.

    Article  Google Scholar 

  43. [43] G.B. Olson and M. Cohen: J. Less-Common Met., 1972, 28, pp. 107-18.

    Article  Google Scholar 

  44. [44] L. Zhang, B. An, S. Fukuyama, T. Iijima and K. Yokogawa: J. Appl. Phys., 2010, 108, pp. 063526.

    Article  Google Scholar 

  45. [45] P.J. Ferreira, I.M. Robertson and H.K. Birnbaum: Acta Mater., 1998, 46, pp. 1749-57.

    Article  Google Scholar 

  46. [46] T. Tabata and H.K. Birnbaum: Scripta Metall. Mater., 1983, 17, pp. 947-50.

    Article  Google Scholar 

  47. [47] Y.-B. Wang, W.-Y. Chu and C.-M. Hsiao: Scripta Metall. Mater., 1985, 19, pp. 1161-64.

    Article  Google Scholar 

  48. [48] P. Sofronis, Y. Liang and N. Aravas: European Journal of Mechanics - A/Solids, 2001, 20, pp. 857-72.

    Article  Google Scholar 

  49. [49] S. Teus, V. Shyvanyuk and V. Gavriljuk: Mater. Sci. Eng. A, 2008, 497, pp. 290-94.

    Article  Google Scholar 

  50. [50] R. Yang, D.L. Zhao, Y.M. Wang, S.Q. Wang, H.Q. Ye and C.Y. Wang: Acta Mater., 2001, 49, pp. 1079-85.

    Article  Google Scholar 

  51. [51] Y. Tomota: Tetsu to Hagané, 1991, 77, pp. 11.

    Google Scholar 

  52. [52] J.A. Venables: Philos. Mag., 1962, 7, pp. 35-44.

    Article  Google Scholar 

  53. [53] Y. Tomota and S. Shibuki: ISIJ Int., 1990, 30, pp. 663-65.

    Article  Google Scholar 

  54. [54] M. Blicharski and S. Gorczyca: Met. Sci., 1978, 12, pp. 303-12.

    Article  Google Scholar 

  55. [55] M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe and K. Tsuzaki: Scr. Mater., 2012, 66, pp. 459-62.

    Article  Google Scholar 

Download references

Acknowledgments

MK gratefully acknowledges the financial support by KAKENHI (15K18235). The Materials Manufacturing and Engineering Station at the National Institute for Materials Science supported this work through the production of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomichi Koyama.

Additional information

Manuscript submitted September 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, M., Okazaki, S., Sawaguchi, T. et al. Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ε-Martensite, and Mn Concentration. Metall Mater Trans A 47, 2656–2673 (2016). https://doi.org/10.1007/s11661-016-3431-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3431-9

Keywords

Navigation