Skip to main content
Log in

Three-Dimensional Thermomechanical Simulation and Experimental Validation on Failure of Dissimilar Material Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dissimilar material weld joints, consisting of low-alloy steel and 304LN austenitic stainless steel (SS), have critical application in boiling water reactors in the nuclear industry. It was predicted that phase transformation adjacent to the fusion boundary and stress distribution across the transition joint play a key role in the structural degeneration of these welds. Quantitatively, to evaluate their contribution, two different joints were considered. One was fabricated with buttering material 309L SS (M/S Mishra Dhatu Nigam Limited, Hyderabad, India), and the other was produced with buttering material IN182 (M/S Mishra Dhatu Nigam Limited, Hyderabad, India). Base materials remained the same for both. Thermomechanical simulation on dissimilar material welds was performed using finite-element modeling to predict the thermal effect and stress prone area. Temperature-dependent thermal and structural properties were considered for simulation. Simulation results were compared with microstructural characteristics, and data were obtained from the in-situ tensile test. Simulation results exhibited that stress was at maximum in the buttering material and made the zone weaker with respect to adjacent areas. During the validation of results, it was observed that failure occurred through buttering material and endorsed the inference. The variation in mechanical properties of the two welds was explained considering the effect of thermal state and stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. INCONEL 182 is a trademark of Special Metals Corporation, Huntington Woods, WV.

References

  1. C. Jang, J. Lee, J.S. Kim, and T.E. Jin: Int. J. Press. Vess. Pip., 2008, vol. 85, pp. 635–46.

    Article  Google Scholar 

  2. S. Missori and C. Koerbe: Weld. J., 1997, vol. 76 (3), pp. 125s–134s.

    Google Scholar 

  3. J.N. DuPont, J.N. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Ni-Base Alloys, Wiley, Hoboken, NJ, 2009, pp. 327–76.

    Book  Google Scholar 

  4. A Celik and A. Alsaran: Mater. Characterization, 1999, vol. 43 (5), pp. 311–18.

    Article  Google Scholar 

  5. 5.H. Naffakh, M. Shamanian, and F. Ashrafizadeh: J. Mater. Process. Technol., 2009, vol. 209(7), pp. 3628–39.

    Article  Google Scholar 

  6. M. Sireesha, S.K. Albert, V. Shankar, and S. Sundaresan: J. Nucl. Mater., 2000, vol. 279 (1), pp. 65–76.

    Article  Google Scholar 

  7. J.W Kim, K. Lee, J.S. Kim, and T.S. Byun: J. Nucl. Mater., 2009, vol. 384 (3), pp. 212–21.

    Article  Google Scholar 

  8. H.T. Wang, G.Z. Wang, F.Z. Xuan, C.J. Liu, and S.T. Tu: Mater. Sci. Eng. A, 2013, vol. 568, pp. 108–17.

    Article  Google Scholar 

  9. G. Ramamurthy: Applied Finite Element Analysis, IK International Publishing House, New Delhi, 2012.

    Google Scholar 

  10. T.R. Chandrupatla and A.D. Belegundu: Introduction to Finite Elements in Engineering, PHI Learning Pvt. Limited, New Delhi, 2011.

    Google Scholar 

  11. J. Goldak, A. Chakravarti, and M. Bibby: Metall. Trans. B, 1984, vol. 15B, pp. 299–305.

    Article  Google Scholar 

  12. S. Akella, B.R. Kumar, and V. Harinadh: 1st Int. Conf. on Structural Integrity (ICONS 2014), Kalpakkam, India, 2014, p. 141.

  13. M. Turksi and L. Edwards: Int. J. Press. Vess. Pip., 2009, vol. 86 (1), pp. 126–31.

    Article  Google Scholar 

  14. S. Sahin, M. Toparli, I. Ozdemir, and S. Sasaki: J. Mater. Proc. Technol., 2003, vol. 132 (1), pp. 235–41.

    Article  Google Scholar 

  15. A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan: Int. J. Press. Vess. Pip., 2005, vol. 82 (9), pp. 700–05.

    Article  Google Scholar 

  16. S. Xu: Proc. Eng,. 2011, vol. 15, pp. 3860–64.

    Article  Google Scholar 

  17. K. Sharma, H.K. Khandelwal, V. Bhasin, and R. Chhibber: Adv. Mater. Res., 2012, vol. 585, pp. 342–46.

    Article  Google Scholar 

  18. https://inis.iaea.org/search/search.aspx?orig_q=RN:43001715.

  19. C.D. Lundin: Weld. J., 1982, vol. 61 (2), pp. 58–63.

    Google Scholar 

  20. R.L. Klueh and J.F. King: Weld. J., 1982, vol. 61 (9), pp. 302–11.

    Google Scholar 

  21. 21. W.J. Mills and C.M. Brown: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1161–74.

    Article  Google Scholar 

  22. 22. M. Ghosh, R. Santosh, S.K. Das, G. Das, B. Mahato, J. Korody, S. Kumar, and P.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3555–68.

    Article  Google Scholar 

  23. 23. R.W. Lewis, P. Nithiarasu, and K.N. Seetharamu: Fundamentals of the Finite Element Method for Heat and Fluid Flow, Wiley-Blackwell Publications, Hoboken, NJ, 2004.

    Book  Google Scholar 

  24. A. Kandil: Int. J. Mech. Sci., 1996, vol. 38 (12), pp. 1319–32.

    Article  Google Scholar 

  25. J.H. Faupel and F.E. Fisher: Engineering Design: A Synthesis of Stress Analysis and Material Engineering, John Wiley and Sons, New York, NY, 1981.

    Google Scholar 

  26. B.A. Boley and J.H. Weiner: Theory of Thermal Stresses, Dover, New York, 1997

    Google Scholar 

  27. P.K. Singh, V. Bhasin, K.K. Vaze, A.K. Ghosh, and H.S. Kushwaha: Structural Integrity of Main Heat Transport System Piping of AHWR, 2008, Issue 299, pp. 2–18.

  28. http://web.askewindustrial.com/ASTM/A508A508M.pdf?tblASTMSpecsPage=9.

  29. K. Ikushima, A. Takeuchi, T. Okada, S. Itoh, S. Nishikawa, and M. Shibahara: Proc. 1st Int. Joint Symp. on Joining and Welding, 1st ed., Hidetoshi Fujii, ed., Woodhead Publishing, Cambridge, United Kingdom, 2013, pp. 537–45.

  30. 30. S. Nadimi, R.J. Khoushehmehr, B. Rohani, and A. Mostafapour: J. Appl. Sci., 2008, vol. 8 (6), pp. 1014–20.

    Article  Google Scholar 

  31. 31. J.A. Lichtenfeld, C.J. Tyne, and M.C. Mataya: Metall. Mater. Trans. A, 2006, vol. 37 (1), pp. 147–61.

    Article  Google Scholar 

  32. V. Deaconu: 5th Int. Conf. Structural Integrity of Weld Structures (ISCS2007), Timisora, Romania, 2007, pp. 20–21.

  33. K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 115–24

    Article  Google Scholar 

  34. 34. D.J. Kotecki and V.B. Rajan: Weld. J.-Inc. Weld. Res. Suppl., 1997, vol. 76 (2), pp. 57s–66s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghosh.

Additional information

Manuscript submitted November 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, R., Das, S.K., Das, G. et al. Three-Dimensional Thermomechanical Simulation and Experimental Validation on Failure of Dissimilar Material Welds. Metall Mater Trans A 47, 3511–3521 (2016). https://doi.org/10.1007/s11661-016-3476-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3476-9

Keywords

Navigation