Skip to main content
Log in

Effect of Mg Content on the Microstructure and Toughness of Heat-Affected Zone of Steel Plate after High Heat Input Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Mg content on the microstructure and toughness of the heat-affected zone (HAZ) of steel plates after high heat input welding was investigated by means of welding thermal simulation test and in situ observation through high-temperature laser scanning confocal microscopy. It was found that with the increase of Mg content in the steel, the former austenite grain sizes were greatly decreased and the mainly microstructural constituents in HAZ were changed from the brittle constituents of Widmanstätten ferrite, ferrite side plate and upper bainite to the ductile constituents of intragranular acicular ferrite and polygonal ferrite. The proportion of grain boundary ferrite was decreased greatly with the further addition of Mg from 27 to 99 ppm. As a result, the HAZ toughness after welding with heat input of 400 kJ cm−1 is increased with increasing Mg content in the steel plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida and H. Yasui: Nippon Steel Tech. Rep., 2004, pp. 2–6.

  2. T. Koseki and G. Thewlis: Mater. Sci. Technol., 2005, vol. 21, pp. 867-879.

    Article  Google Scholar 

  3. D. Phelan, N. Stanford and R. Dippenaar: Mater. Sci. Eng. A, 2005, vol. 407, pp. 127-134.

    Article  Google Scholar 

  4. D. S. Sarma, A. V. Karasev and P. G. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1063-1074.

    Article  Google Scholar 

  5. D. Zhang, H. Terasaki and Y. I. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-1378.

    Article  Google Scholar 

  6. J. Yang, K. Zhu, R. Z. Wang, Y. Zhang and J. G. Shen: Baosteel Tech. Res., 2010, vol. 4, pp. 32-36.

    Google Scholar 

  7. J. Yang, Z. G. Ma, K. Zhu, R. Z. Wang and Q. Zheng: Baosteel Tech. Res., 2012, vol. 9, pp. 41-46.

    Google Scholar 

  8. 8. D. Zhang, Y. Shintaku, S. Suzuki and Y. I. Komizo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 447-458.

    Article  Google Scholar 

  9. S. Ogibayashi: Nippon Steel Tech. Rep., 1994, pp. 70–76.

  10. Z. Zhang and R. A. Farrar: Mater. Sci. Technol., 1996, vol. 12, pp. 237-260.

    Article  Google Scholar 

  11. G. Thewlis: Mater. Sci. Technol., 2006, vol. 22, pp. 153-166.

    Article  Google Scholar 

  12. C. H. Chang, I. H. Jung, S. C. Park, H. S. Kim and H. G. Lee: Ironmak. Steelmak., 2005, vol. 32, pp. 251-257.

    Article  Google Scholar 

  13. H. S. Kim, C. H. Chang and H. G. Lee: Scripta Mater., 2005, vol. 53, pp. 1253-1258.

    Article  Google Scholar 

  14. 14. F. Chai, C. F. Yang, H. Su, Y. Q. Zhang and Z. Xu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 69-74.

    Article  Google Scholar 

  15. A. V. Karasev and H. Suito: ISIJ Int., 2008, vol. 48, pp. 1507-1516.

    Article  Google Scholar 

  16. B. Wen and B. Song: J. Manuf. Sci. Prod., 2013, vol. 13, pp. 61-72.

    Google Scholar 

  17. K. Zhu, J. Yang, R. Z. Wang and Z. G. Yang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 60-64.

    Article  Google Scholar 

  18. Y. I. Komizo: Trans. JWRI, 2011, vol. 40, pp. 7-20.

    Google Scholar 

  19. X. L. Wan, K. M. Wu, L. Cheng and R. Wei: ISIJ Int., 2015, vol. 55, pp. 679-685.

    Article  Google Scholar 

  20. T. L. Zhang, Z. X. Li, S. Kou, H. Y. Jing, G. D. Li, H. Li and H. J. Kim: Mater. Sci. Eng. A, 2015, vol. 628, pp. 332-339.

    Article  Google Scholar 

  21. J. Yang, L. Y. Xu, K. Zhu, R. Z. Wang, L. J. Zhou and W. L. Wang: Steel Res. Int., 2015, vol. 85, pp. 619-625.

    Article  Google Scholar 

  22. X. S. Jiang and H. Zhao: Steel Fracture Microstructure Handbook, China Machine Press, Beijing, 2010, p. 9.

    Google Scholar 

  23. 23. J. Yang, K. Zhu and G. D. Wang: Baosteel Tech. Res., 2008, vol. 2, pp. 9-16.

    Google Scholar 

  24. H. K. Sung, S. S. Sohn, S. Y. Shin, K. S. Oh and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3036-3050.

    Article  Google Scholar 

  25. M. H. Shi, P. Y. Zhang and F. X. Zhu: ISIJ Int., 2014, vol. 54, pp. 188-192.

    Article  Google Scholar 

  26. Y. TERADA, H. TAMEHIRO and R. CHIJIIWA: Tetsu- to- Hagane, 2004, vol. 90, pp. 812-818.

    Google Scholar 

  27. Yang Jian, Zhu Kai, Wang Ruizhi and Shen Jianguo: Steel Res. Int., 2011, vol. 82, pp. 552-556.

    Article  Google Scholar 

Download references

Acknowledgment

The financial support from Baosteel Group Corporation is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

Manuscript submitted January 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LY., Yang, J., Wang, RZ. et al. Effect of Mg Content on the Microstructure and Toughness of Heat-Affected Zone of Steel Plate after High Heat Input Welding. Metall Mater Trans A 47, 3354–3364 (2016). https://doi.org/10.1007/s11661-016-3535-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3535-2

Keywords

Navigation