Skip to main content
Log in

Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

  • Symposium: Additive Manufacturing: Building the Pathway to Process and Material Qualification
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ′ precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roger C. Reed: The Superalloys: Fundamentals and Applications. Cambridge University Press, New York, 2006.

    Book  Google Scholar 

  2. J.K. Tien: Superalloys, Supercomposites and Superceramics. (Elsevier, 2012).

  3. D.J. Frasier, J.R. Whetstone, K. Harris, G.L. Erickson, R.E. Schwer, High Temperature Materials for Power Engineering, 1990, pp. 1281–1300.

  4. A.F. Giamei, D.D. Pearson and D.L. Anton, In MRS Proceedings, (Cambridge University Press, Cambridge, 1984), pp 293–308.

  5. 5. J Rüsing, N Wanderka, U Czubayko, V Naundorf, D Mukherji and J Rösler, Scripta Materialia 2002, vol. 46, pp. 235-240.

    Article  Google Scholar 

  6. A. Mottura, N. Warnken, M.K. Miller, M.W. Finnis and R.C. Reed, Acta Materialia 2010, vol. 58, pp. 931-942.

    Article  Google Scholar 

  7. 7. A Sengupta, SK Putatunda, L Bartosiewicz, J Hangas, PJ Nailos, M Peputapeck and FE Alberts, Journal of Materials Engineering and Performance 1994, vol. 3, pp. 73-81.

    Article  Google Scholar 

  8. M. J. Donachie, S. J. Donachie: Superalloys: A Technical Guide. ASM international, Materials Park, 2002.

    Google Scholar 

  9. 9. M Lamm and RF Singer, Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1177-1183.

    Article  Google Scholar 

  10. 10. M Gäumann, C Bezencon, P Canalis and W Kurz, Acta Materialia 2001, vol. 49, pp. 1051-1062.

    Article  Google Scholar 

  11. 11. S Mokadem, C Bezençon, A Hauert, A Jacot and W Kurz, Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1500-1510.

    Article  Google Scholar 

  12. 12. A Gregori and D Bertaso, Welding in the World 2003, vol. 51, pp. 34-47.

    Article  Google Scholar 

  13. 13. SS Babu, SA David, JW Park and JM Vitek, Science and Technology of Welding & Joining 2004, vol. 9, pp. 1-12.

    Article  Google Scholar 

  14. 14. MB Henderson, D Arrell, R Larsson, M Heobel and G Marchant, Science and Technology of Welding & Joining 2004, vol. 9, pp. 13-21.

    Article  Google Scholar 

  15. 15. M Gäumann, S Henry, F Cleton, J-D Wagniere and W Kurz, Materials Science and Engineering: A 1999, vol. 271, pp. 232-241.

    Article  Google Scholar 

  16. 16. C Bezencon, A Schnell and W Kurz, Scripta Materialia 2003, vol. 49, pp. 705-709.

    Article  Google Scholar 

  17. 17. R Vilar, EC Santos, PN Ferreira, N Franco and RC Da Silva, Acta Materialia 2009, vol. 57, pp. 5292-5302.

    Article  Google Scholar 

  18. E. C. Santos, K. Kida, P. Carroll, R. Vilar (2011) Adv. Mater. Res. 154–155: 1405-1414.

    Google Scholar 

  19. 19. LE Murr, Additive Manufacturing 2015, vol. 5, pp. 40-53.

    Article  Google Scholar 

  20. M. Ramsperger, L. Mújicaroncery, I. Lopez-Galilea, R. F. Singer, W. Theisen, C. Körner, Advanced Engineering Materials 2015, vol. 17, pp. 1486-1493.

    Article  Google Scholar 

  21. 21. TD Anderson, JN DuPont and T DebRoy, Acta Materialia 2010, vol. 58, pp. 1441-1454.

    Article  Google Scholar 

  22. 22. THC Childs, C Hauser and M Badrossamay, CIRP Annals-Manufacturing Technology 2004, vol. 53, pp. 191-194.

    Article  Google Scholar 

  23. 23. M Picasso and AFA Hoadley, International Journal of Numerical Methods for Heat & Fluid Flow 1994, vol. 4, pp. 61-83.

    Article  Google Scholar 

  24. 24. DV Bedenko and OB Kovalev, Thermophysics and Aeromechanics 2013, vol. 20, pp. 251-261.

    Article  Google Scholar 

  25. 25. Zhaoyang Liu and Huan Qi, Metallurgical and Materials Transactions A 2014, vol. 45, pp. 1903-1915.

    Article  Google Scholar 

  26. 26. Jyotirmoy Mazumder, Optical Engineering 1991, vol. 30, pp. 1208-1219.

    Article  Google Scholar 

  27. 27. Weiping Liu and JN DuPont, Acta Materialia 2004, vol. 52, pp. 4833-4847.

    Google Scholar 

  28. R. Acharya, R. Bansal, J. J. Gambone, S. Das, Metallurgical and Materials Transactions B 2014, vol. 45, pp. 2247-2261.

    Article  Google Scholar 

  29. R. Acharya and S. Das, Advanced Engineering Materials 2015, vol. 46, pp. 3864-75.

    Article  Google Scholar 

  30. 30. Suman Das, Advanced Engineering Materials 2003, vol. 5, pp. 701-711.

    Article  Google Scholar 

  31. R. Acharya, R. Bansal, J. J. Gambone, S. Das, Metallurgical and Materials Transactions B 2014, vol. 45, pp. 2279-2290.

    Article  Google Scholar 

  32. R. Acharya, R. Bansal, J. J. Gambone, M. A. Kaplan, G. E. Fuchs, N.G. Rudawski and S. Das, Advanced Engineering Materials 2015, vol. 17, pp. 942-950.

    Article  Google Scholar 

  33. J.J. Gambone, (MS Thesis, Georgia Institute of Technology: 2012).

  34. R. Acharya, (Ph.D. Thesis, Georgia Institute of Technology: 2014).

  35. I. Hamill, (Technical Report, CFX Ltd., Oxfordshire, 2003).

  36. W. L. McCabe, J. C. Smith, P. Harriott: Unit Operations of Chemical Engineering. McGraw-Hill, New York, 1993.

    Google Scholar 

  37. 36. LX Yang, XF Peng and BX Wang, International Journal of Heat and Mass Transfer 2001, vol. 44, pp. 4465-4473.

    Article  Google Scholar 

  38. T. Matsushita, H.-J. Fecht, R. K. Wunderlich, I. Egry, S. Seetharaman, Journal of Chemical & Engineering Data 2009, vol. 54, pp. 2584-2592.

    Article  Google Scholar 

  39. 38. YS Lee, .M Nordin, SS Babu and DF Farson, Welding Journal 2014, vol. 93, pp. 292-300.

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Office of Naval Research through grants N00014-11-1-0670 and N00014-14-1-0658. The authors would like to thank Mr. Parthasarathi Chakraborti, Packaging Research Center, Georgia Institute of Technology for his assistance with SEM.

Disclosures

Dr. Suman Das is a co-founder of DDM Systems, a start-up company commercializing SLE technology. Dr. Das and Georgia Tech are entitled to royalties derived from DDM Systems’ sale of products related to the research described in this paper. This study could affect their personal financial status. The terms of this arrangement have been reviewed and approved by Georgia Tech in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Das.

Additional information

Manuscript submitted January 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Acharya, R. & Das, S. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization. Metall Mater Trans A 47, 3845–3859 (2016). https://doi.org/10.1007/s11661-016-3571-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3571-y

Keywords

Navigation