Skip to main content
Log in

Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The interfacial reaction between solid steel and liquid aluminum has been widely investigated in past decades; however, some issues, such as the solid/liquid interfacial structure, formation mechanisms of FeAl3 and Fe2Al5, and interaction between the growth and dissolution of intermetallic compounds, are still not fully understood. In this study, a hot-dipping method is designed to investigate the interfacial reaction in the temperature range between 973 K and 1273 K (700 °C 1000 °C) for 10 to 60 seconds. The intensification of the dissolution leads to the transformation of FeAl3/liquid aluminum into Fe2Al5/liquid aluminum in the solid/liquid structure with increasing reaction temperature. The formation of FeAl3 adhered to the interface depends not only on the reaction mechanism but also on precipitation at relatively low temperatures. In contrast, precipitation is the only formation mechanism for FeAl3 at relatively high temperatures. Austenitizing results in the complete transformation of the tongue-like Fe2Al5/Fe interface to a flat shape. The growth of Fe2Al5 with respect to the maximum thickness is governed by the interfacial reaction process, whereas the growth of Fe2Al5 with respect to the average thickness is governed by the diffusion process in the range of 973 K to 1173 K (700 °C to 900 °C) for 10 to 60 seconds. The dissolution of the parent metal is due to the natural dissolution of FeAl3 at low temperatures and Fe2Al5 at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Kang, C. Kim, Materials & Design, 81(2015) 95-103

    Article  Google Scholar 

  2. K. Saida, W. Song, K. Nishimoto, Sci. Technol. Weld. Joining, 10(2005)227-235.

    Article  Google Scholar 

  3. A. Mathieu, S. Pontevicci, J. Viala, E. Cicala, S. Matte, D. Grevey, Mater. Sci. Eng. A, 435-436(2006)19-28.

    Article  Google Scholar 

  4. M. Emami, H. R. Shahverdi, S. Hayashi,and M. J. Torkamany, Metall. Mater. Trans. A, 44(2013)3176-3184

    Article  Google Scholar 

  5. A. Bahadur, Mater. Manuf. Process., 11(1996)225-232.

    Article  Google Scholar 

  6. J. C. Viala, M. Peronnet, F. Barbeau, F. Bosselet, J. Bouix, Composites: Part A, 33(2002)1417-1420

    Article  Google Scholar 

  7. G. Sierra, P. Peyre, F. Deschaux Beaume, D. Stuart, G. Fras, Mater. Charact., 5(2000)1705-1715.

    Google Scholar 

  8. G. Sierra, P. Peyre, Sci. Technol. Weld. Joining, 13(2008)430-437.

    Article  Google Scholar 

  9. E. Carrera, A. Rodriguez, J. Talamantes, S. Valtierra, and R. Colas, J. Mater. Process. Technol., 189(2007) 206–210.

    Article  Google Scholar 

  10. A. Lombardi, F. D’Elia, C. Ravindran, D. Sediako, B.S. Murty, and R. MacKay, Metall. Mater. Trans. A, 43(2012)5258–5270.

    Article  Google Scholar 

  11. A. Lombardi, C. Ravindran, D. Sediako, and R. MacKay, Metall. Mater. Trans. A, 45(2014)6291-6303

    Article  Google Scholar 

  12. S. H. Hwang, J. H. Song, Y. S. Kim, Mater. Sci. Eng. A, 390(2005)437-443

    Article  Google Scholar 

  13. T. Heumann, N. Dittrich, Zeitschrift fur Metallkunde, 50(1959)617-625.

    Google Scholar 

  14. G. Eggeler, H. Vogel, J. Friedrich, H. Kaesche, Practical Metallography, 22(1985)163-170.

    Google Scholar 

  15. G. Eggeler, W. Auer, Zeitschrift fur Metallkunde, 77(1986)239-244.

    Google Scholar 

  16. K. Bouché, F. Barbier, A. Coulet, Mater. Sci. Eng. A, 249(1998)167-175.

    Article  Google Scholar 

  17. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, J. Hejazi, J. Mater. Process. Technol., 124(2002)345-352.

    Article  Google Scholar 

  18. S. Kobayashi, T. Yakou, Mater. Sci. Eng. A, 338(2000)44-53.

    Article  Google Scholar 

  19. A. Bouayad, Ch. Gerometta, A. Belkebir, A. Ambari, Mater. Sci. Eng. A, 36(2003)53-61.

    Article  Google Scholar 

  20. T. S. Shih, S. H. Tu, Mater. Sci. Eng. A, 454-455(2007)349-356.

    Article  Google Scholar 

  21. M. Yousaf, J. Iqbal, M. Ajmal, Mater. Charact., 62(2011)517-525.

    Article  Google Scholar 

  22. V. N. Yeremenko, Y. V. Natanzon, V. I. Dybkov, J. Mater. Sci., 16(1981)1748-1956.

    Article  Google Scholar 

  23. U. R. Kattner, B. P. Burton, In: Okamoto H, editor. Al–Fe (aluminum–iron), phase diagrams of binary iron alloys. Materials Park, OH: ASM International, 1993, pp. 12.

    Google Scholar 

  24. Q. Wang, X. S. Leng, T. H. Yang, J. C. Yan, Trans. Nonferrous Met. Soc. China, 24(2014)279-284

    Article  Google Scholar 

  25. A. Noyes, W. R. Whitney, J. Am. Chem. Soc., 19(1897)930-934.

    Article  Google Scholar 

  26. H. Rezaei, M. R. Akbarpour, and H. R. Shahverdi, JOM, 67(2015)1443-1450

    Article  Google Scholar 

  27. K. Schubert, U. Rösler, K. Anderko and L. Härle, Naturwiss 40(1953)437

    Google Scholar 

  28. W. J. Cheng, C. J. Wang, Surf. Coat. Technol., 204(2009)824-828.

    Article  Google Scholar 

  29. Q. Zhang, J. H. Chen, Y. J. Li, Heat Treatment Metal, 25(2000)7-9.

    Google Scholar 

  30. Q. Guo, X. M. Luo, K. M. Chen, L. Pan, China Surface Engineering, 19(2006)16-20.

    Google Scholar 

  31. V. I. Dybkov, J. Mater. Sci., 25(1990)3615-3633

    Article  Google Scholar 

  32. N. Tang, Y. P. Li, S. Kurosu, Y. Koizumi, H. Matsumoto, A. Chiba, Corrosion Science, 60(2012)32–37

    Article  Google Scholar 

  33. S. G. Shabestari, K. A.Nazari, International Journal of Materials Research, 104(2013) 351-357

    Article  Google Scholar 

  34. Xianman Zhang,Xiaomei Li and Weiping Chen. Interfacial reactions of duplex stainless steels with molten aluminum. Surf. Interface Anal., 47(2015) 648–656

    Article  Google Scholar 

  35. H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, Acta Mater., 59(2011)586-600.

    Article  Google Scholar 

  36. H. Springer, A. Szczepaniak, D. Raabe. Acta Mater., 96 (2015) 203–211

    Article  Google Scholar 

  37. N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Intermetallics, 54(2014)136-142

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 51575040) and the Fundamental Research Funds for the Central Universities (FRF-TP-15-004A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Huang.

Additional information

Manuscript submitted December 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yang, D., Zhang, M. et al. Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum. Metall Mater Trans A 47, 5088–5100 (2016). https://doi.org/10.1007/s11661-016-3667-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3667-4

Keywords

Navigation