Skip to main content
Log in

Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF–HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF–HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF–HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner’s linear damage rule proved to be highly non-conservative. Manson’s damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant (β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Chellapandi, A. Biswas, R. Srinivasan, S.C. Chetal and S.B. Bhoje, Trans Indian Inst. Met., 2005, vol. 58 (2), pp. 207-19.

    Google Scholar 

  2. P. Chellapandi, Report No. TWF-FR/144, Beijing, China, 2010.

  3. S.B. Bhoje, P. Chellapandi, Proc. Technical Committee Meeting, IAEA Tech. Doc 933, Manchester, UK, 1997, pp. 97–115.

  4. M.D. Mathew, R. Sandhya, K. Laha, Energy Procedia, 2011, vol. 7, pp. 250-56

    Article  Google Scholar 

  5. P. Chellpandi, S.C. Chetal and Baldev Raj, Nucl. Eng. Des., 2009, vol. 239(12), pp. 2745-65

    Google Scholar 

  6. A. Sarkar, A. Nagesha, R. Sandhya and M.D. Mathew. High Temp. Mater. Proc., 2015, vol. 34(5), pp. 435-439.

    Article  Google Scholar 

  7. T. Topper, B. Sandor and J. Morrow, J. Mater., 1969, vol. 4(1), pp. 189-99

    Google Scholar 

  8. Gary Halford, Int. J. Fatigue, 1997, vol. 19, pp. S253-S260

    Article  Google Scholar 

  9. Y.K. Wong, X.Z. Hu and M.P. Norton, Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 201-13

    Article  Google Scholar 

  10. Y.K. Wong. X.Z. Hu and M.P. Norton, J. Test. Eval., 2001, vol. 29(2), pp. 138-45

    Article  Google Scholar 

  11. M.J. O’Neil, ARL/SM-Report-326, Aeronautical Research Laboratories, Melbourne, Australia, 1970

  12. S.R. Velluri, Report No. ARL 182, Aeronautical Research Laboratory, United States Air Force, 1961

  13. S. Zhao-Feng, W. De-Jun and X. Hao, Int. J. Fatigue, 1992, vol. 14(6), pp. 395-98

    Article  Google Scholar 

  14. J. Dubuc, T. Bui-Quoc,, A. Bazergui and A. Biron, WRC Bulletin, 1971, vol. 162, pp. 1-20

    Google Scholar 

  15. M.A. McGrew: Proceedings of an Exposition and Symposium of Structures Technology, Cleveland, OH, USA, 1988, vol. 3, pp. 201–11,

  16. S.S. Manson, G.R. Halford, Int. J. Fracture, 1981, vol. 17, pp. 169-192

    Article  Google Scholar 

  17. S.S. Manson, J.C. Freche and C.R. Ensign: ASTM STP 415, 1967, Philadelphia, PA, pp. 384–412

  18. S.S. Manson and G.R. Halford, Int. J. Fract., 1981, vol. 17, pp. R35-R42

    Article  Google Scholar 

  19. P.T. Bizon, D.J. Thoma and G.R. Halford: NASA CP-2381, Center for Aerospace Information, Linthicum Heights, Maryland, 1985, pp. 129–38

  20. S.S. Manson and S. Hailu: in PVP, vol. 290, S.Y. Zamrick and G.R. Halford, eds., ASME, New York, 1994, pp. 1–9

  21. V.S. Srinivasan, R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, K.S. Raghavan, Int. J. Fatigue, 13 (1991) pp. 471-78.

    Article  Google Scholar 

  22. G.V. Prasad Reddy, R. Sandhya, K. Bhanu Sankara Rao and S. Sankaran: Proc. Eng., 2010, vol. 2, pp. 2181–88

  23. A.H.Cottrell, In; Dislocations and plastic flow in crystals; 1st Edition, Oxford University, Oxford, 1953.

    Google Scholar 

  24. P. Rodriguez, Bulletin Mater. Sci. 6 (1984) 653-63.

    Article  Google Scholar 

  25. J. Ganesh Kumar, M. Chowdary, V. Ganesan, R.K. Paretkar, K.B.S. Rao, and M.D. Mathew, Nucl. Eng. Des., 2010, vol. 240(6), pp. 1363-70.

    Article  Google Scholar 

  26. S.M. Marco and W.L. Starkey, Trans. ASME, 1953, vol. 53, pp. 627-32

    Google Scholar 

  27. B.F. Langer: Trans. ASME, 1937, vol. 59, p. A-160

  28. T. Nicholas, Int. J. Fatigue, 1999, vol. 21, pp. S21-S31.

    Google Scholar 

  29. A. Plamgren, Zeitschrift des Vereinesdeutscher Ingeneerure, 1924, vol. 68(14) pp. 339-41

    Google Scholar 

  30. M.A. Miner, J. Appl. Mechanics, 1945, vol. 67, pp. A159-A164

    Google Scholar 

  31. G.R. Halford and S.S. Manson: NASA CP-2381, 1985, Center for aerospace information, Linthicium Heights, Maryland, pp. 139–45

  32. S.S. Manson, G.R. Halford, Fatigue and durability of structural materials, ASM International, Materials Park, Ohio, 2006, pp. 123-56

    Google Scholar 

  33. S.S. Manson, Engg. Fract. Mech., 1986, vol. 25, pp. 539-571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Sarkar.

Additional information

Manuscript submitted May 17, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Nagesha, A., Parameswaran, P. et al. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms. Metall Mater Trans A 48, 953–964 (2017). https://doi.org/10.1007/s11661-016-3909-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3909-5

Keywords

Navigation