Skip to main content
Log in

Structural and Magnetic Studies of Thermally Treated NiFe2O4 Nanoparticles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The heat treatment of nanoparticles can have a direct effect on their particle sizes, which, in turn, can influence many of their structural and magnetic properties. Here, we report the effect of sintering temperature on the chemically synthesized high-quality NiFe2O4 nanoparticles. The structural studies show the formation of pure NiFe2O4 nanoparticles with the space group \( Fd{\bar{\text{3}}}m \). The inverse spinel structure was also confirmed from the lattice vibrations analyzed from Raman and Fourier transform infrared spectroscopy (FTIR) spectra. The presence of strong exchange interactions was detected from the temperature-dependent magnetization study. Moreover, at higher sintering temperatures, the grain growth due to fusion of several smaller particles by coalescing their surfaces enhances the crystallinity and its magnetocrystalline anisotropy. Coercivity and saturation magnetization were found to depend significantly on the sintering temperature, which was understood in the realm of the formation of single-domain-like structure and change in magnetocrystalline anisotropy at higher sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Mathew and R.S. Juang: Chem. Eng. J., 2007, vol. 129, pp. 51–56.

    Article  Google Scholar 

  2. B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, and T. Tahmasebi: J. Magn. Magn. Mater., 2010, vol. 322, pp. 2929–34.

    Article  Google Scholar 

  3. D.H. Han, H.L. Luo, and Z. Yang: J. Magn. Magn. Mater., 1996, vol. 161, pp. 376–78.

    Article  Google Scholar 

  4. C.H. Cunningham, T. Arai, P.C. Yang, M.V. McConnell, J.M. Pauly, and S.M. Connolly: Magn. Reson. Med., 2005, vol. 53, pp. 999–1005.

    Article  Google Scholar 

  5. A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, and S.A. Majetich: IEEE Trans. Magn., 2000, vol. 36, pp. 3029–31.

    Article  Google Scholar 

  6. R. Valenzuela: Phys. Res. Int., 2012, vol. 2012, p. 591839.

    Article  Google Scholar 

  7. Y.T. Jong, K.J. Sung, K.B. Geol, K. Nam, C.M. Haing, and L.J. Kyu, Angew. Chem., Int. Ed., 2005, vol. 44, pp. 1068–95.

    Article  Google Scholar 

  8. B.D. Cullity and S. Graham: Introduction to Magnetic Materials, Wiley, New York, NY, 2009.

    Google Scholar 

  9. A. Godman: J. Mater. Eng. Perform., 1995, vol. 4, pp. 395–400.

    Article  Google Scholar 

  10. J. Zhang, J. Shi, and M. Gong: J. Solid State Chem., 2008, vol. 182, pp. 2135–40.

    Article  Google Scholar 

  11. X.M. Liu, S.Y. Fu, and C.J. Huang: J. Magn. Magn. Mater., 2004, vol. 281, pp. 234–39.

    Article  Google Scholar 

  12. M.S. Niasari, F. Davar, and T. Mahmoudi: Polyhedron, 2009, vol. 28, pp. 1455–58.

    Article  Google Scholar 

  13. M.A.F. Ramalho, L. Gama, S.G. Antonio, C.O. Paiva-Santos, E.J. Miola, R.H.G.A. Kiminami, and A.C.F.M. Costa: J. Mater. Sci., 2007, vol. 42, pp. 3603–06.

    Article  Google Scholar 

  14. W.Z. Wang, C.K. Xu, G.H. Wang, K.L. Liu, and C.L. Zheng: Adv. Mater., 2002, vol. 14, pp. 837–40.

    Article  Google Scholar 

  15. K. Maaz, A. Mumtaz, S.K. Hasanain, and A. Ceylan: J. Magn. Magn. Mater., 2007, vol. 308, pp. 289–95.

    Article  Google Scholar 

  16. M.K. Roy, B. Halder, and H.C. Verma: Nanotechnology, 2006, vol. 17, pp. 232–37.

    Article  Google Scholar 

  17. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, and A.H. Shaari: Powder Technol., 2011, vol. 212, pp. 80–88.

    Article  Google Scholar 

  18. W.B. White and B.A. DeAngelis: Spectrochim. Acta, 1967, vol. 23A, pp. 985–95.

    Article  Google Scholar 

  19. Z.H. Zhou, J.M. Xue, J. Wang, H.S.O. Chan, T. Yu, and Z.X. Shen: J. Appl. Phys., 2002, vol. 91, pp. 6015–20.

    Article  Google Scholar 

  20. J. Kreisel, G. Lucazeau, and H. Vincent: J. Solid State Chem., 1998, vol. 137, pp. 127–37.

    Article  Google Scholar 

  21. Y. Shi, J. Ding, Z.X. Shen, W.X. Sun, and L. Wang: Solid State Commun., 2000, vol. 115, pp. 237–41.

    Article  Google Scholar 

  22. A.A. Kamnev and M. Ristic: J. Mol. Struct., 1997, vols. 408–409, pp. 301–04.

    Article  Google Scholar 

  23. S. Yan, J. Geng, J. Chen, L. Yin, Y. Zhou, and E. Zhou: J. Cryst. Growth, 2004, vol. 262, pp. 415–19.

    Article  Google Scholar 

  24. K.S.K. Varadwaj, M.K. Panigrahi, and J. Ghose: J. Solid State Chem., 2004, vol. 177, pp. 4286–92.

    Article  Google Scholar 

  25. T. Shimada, T. Tachibana, T. Nakagawa, and T.A. Yamamoto: J. Alloys Compd., 2004, vol. 379, pp. 122–26.

    Article  Google Scholar 

  26. Z.M. Tian, S.L. Yuan, S.Y. Yin, L. Liu, J.H. He, H.N. Duan, P. Li, and C.H. Wang: Appl. Phys. Lett., 2008, vol. 93, pp. 222505-1–222505-3.

    Google Scholar 

  27. S.S. Starchikov, I.S. Lyubutin, C.R. Lin, Y.T. Tseng, K.O. Funtov, Y.L. Ogarkova, T.V. Dmitrieva, and A.G. Ivanova: Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 15829–15836.

    Article  Google Scholar 

  28. V. Sepelak, K. Tkacova, V.V. Boldyrev, S. Wibmann, and K.D. Becker: Physica B, 1997, vols. 234–236, pp. 617–19.

    Article  Google Scholar 

  29. S. Chikazumi: Physics of Magnetism, John Wiley, New York, NY, 1959.

    Google Scholar 

  30. M. George, A.M. John, S.S. Nair, P.A. Joy, and M.R. Anantharaman: J. Magn. Magn. Mater., vol. 302, 2006, pp. 190–95.

    Article  Google Scholar 

  31. M.A. Gabal, Y.M.A. Angari, and M.W. Kadi: Polyhedron, 2011, vol. 30, pp. 1185–90.

    Article  Google Scholar 

  32. Y. Cheng, Y. Zheng, Y. Wang, F. Bao, and Y. Qin: J. Solid State Chem., 2005, vol. 178, pp. 2394–97.

    Article  Google Scholar 

  33. S. Rana, R.S.M. Srivastava, M. Sorensson, and R.D.K. Misra: Mater. Sci. Eng. B, 2005, vol. 119, pp. 144–51.

    Article  Google Scholar 

  34. R.D.K. Misra, S. Gubbala, A. Kale, and W.F. Egelhoff, Jr.: Mater. Sci. Eng. B, 2004, vol. 111, pp. 164–70.

    Article  Google Scholar 

  35. A.H. Morrish and K.H. Haneda: J. Appl. Phys., 1981, vol. 52, pp. 2496–98.

    Article  Google Scholar 

  36. J.M.D. Coey: Phys. Rev. Lett., 1971, vol. 27, pp. 1140–42.

    Article  Google Scholar 

  37. A.E. Berkowitz, J.A. Lahut, I.S. Jacobs, L.M. Levinson, and D.W. Forester: Phys. Rev. Lett. 1975, vol. 34, pp. 594–97.

    Article  Google Scholar 

  38. A.E. Berkowitz, J.A. Lahut, and C.E. VanBuren: IEEE Trans. Magn. Mag., 1980, vol. 16, pp. 184–90.

    Article  Google Scholar 

  39. J. Jacob and M.A. Khadar: J. Appl. Phys., 2010, vol. 107, pp. 114310-1-114310-10.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Alok Banerjee, Scientist, UGC-DAE (Indore, India), for providing the SQUID facility and discussing the ZFC–FC results. The authors are also thankful to Mr. Debraj Gangopadhyay for helping with the Raman measurement and for discussing the Raman results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Srivastava.

Additional information

Manuscript submitted May 1, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Patel, P.C., Gangopadhyay, D. et al. Structural and Magnetic Studies of Thermally Treated NiFe2O4 Nanoparticles. Metall Mater Trans A 48, 6135–6141 (2017). https://doi.org/10.1007/s11661-017-4344-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4344-y

Navigation