Skip to main content
Log in

Cryogenic Mechanical Properties of Warm Multi-Pass Caliber-Rolled Fine-Grained Titanium Alloys: Ti-6Al-4V (Normal and ELI Grades) and VT14

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of microstructural refinement and the β phase fraction, V β, on the mechanical properties at cryogenic temperatures (up to 20 K) of two commercially important aerospace titanium alloys: Ti-6Al-4V (normal as well as extra low interstitial grades) and VT14 was examined. Multi-pass caliber rolling in the temperature range of 973 K to 1223 K (700 °C to 950 °C) was employed to refine the microstructure, as V β was found to increase nonlinearly with the rolling temperature. Detailed microstructural characterization of the alloys after caliber rolling was carried out using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD), and transmission electron microscopy (TEM). Complete spheroidization of the primary α laths along with formation of bimodal microstructure occurred when the alloys are rolled at temperatures above 1123 K (850 °C). For rolling temperatures less than 1123 K (850 °C), complete fragmentation of the β phase with limited spheroidization of α laths was observed. The microstructural refinement due to caliber rolling was found to significantly enhance the strength with no penalty on ductility both at room and cryogenic temperatures. This was attributed to a complex interplay between microstructural refinement and reduced transformed β phase fraction. TEM suggests that the serrated stress–strain responses observed in the post-yield deformation regime of specimens tested at 20 K were due to the activation of \( \left\{ {10\bar{1}2} \right\} \) tensile twins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. ELI-extra low interstitial, the interstitial elements especially like O levels are reduced to below 0.1 wt pct and N below 0.05 wt pct.

References

  1. G. Welsch, R. Boyer, E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM international, Materials Park, OH, 1993.

    Google Scholar 

  2. O. Umezawa, K. Ishikawa: Cryogenics, 1992, vol. 32, pp. 873–80.

    Article  Google Scholar 

  3. G. Singh, G. Bajargan, R. Datta, U. Ramamurty: Mater. Sci. Eng. A, 2014, vol. 611, pp. 45–57.

    Article  Google Scholar 

  4. I.A. Akmoulin, M. Niinomi, T. Kobayashi: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1655–66.

    Article  Google Scholar 

  5. O.M. Ivasishin, P.E. Markovsky, G.A. Pakharenko, A. V Shevchenko: Mater. Sci. Eng. A, 1995, vol. 196, pp. 65–70.

    Article  Google Scholar 

  6. V.N. Kovaleva, V.A. Moskalenko: Cryogenics, 1989, vol. 29, pp. 1002–5.

    Article  Google Scholar 

  7. B.K. Nagai, K. Hiraga, T. Ogata, K. Ishikawa: T. Jpn. I. Met., 1985, vol. 26, pp. 405–13.

    Google Scholar 

  8. K. Nagal, T. Yuri, T. Ogata, K. Ishikawa: ISIJ Int., 1991, vol. 31, pp. 882–89.

    Article  Google Scholar 

  9. R.Z. Valiev, R.K. Islamgaliev, I. V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-89.

    Article  Google Scholar 

  10. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu: JOM, 2016, vol. 68, pp. 1–11.

    Article  Google Scholar 

  11. V. V Stolyarov, Y.T. Zhu, I. V Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng. A, 2003, vol. 343, pp. 43–50.

    Article  Google Scholar 

  12. A.P. Zhilyaev, T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893–79.

    Article  Google Scholar 

  13. Q. Chen, D. Shu, C. Hu, Z. Zhao, B. Yuan: Mater. Sci. Eng. A, 2012, vol. 541, pp. 98–104.

    Article  Google Scholar 

  14. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  Google Scholar 

  15. S. Torizuka, A. Ohmori, S.V.S. Narayana Murty, K. Nagai: Scr. Mater., 2006, vol. 54, pp. 563–68.

    Article  Google Scholar 

  16. S.V.S.N. Murty, N. Nayan, P. Kumar, P.R. Narayanan, S.C. Sharma, K.M. George: Mater. Sci. Eng. A, 2014, vol. 589, pp. 174–81.

    Article  Google Scholar 

  17. N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44.

    Article  Google Scholar 

  18. N. Tsuji: Fabrication of Bulk Nanostructured Materials by Accumulative Roll Bonding (ARB), Wiley-VCH: Weinheim, Germany, 2009.

    Book  Google Scholar 

  19. E.D. Tabachnikova, V.Z. Bengus, A. V. Podolskiy, S.N. Smirnov, K. Csach, J. Miskuf, L.R. Saitova, I.P. Semenova, R.Z. Valiev: Int. J. Mech. Mater. Des., 2008, vol. 4, pp. 189–95.

    Article  Google Scholar 

  20. E.W. Collings: The Physical Metallurgy of Titanium Alloys [Russian Translation], Metallurgiya, Moscow, 1988.

    Google Scholar 

  21. D.R. Salmon: Low Temperature Data Handbook, Titanium and Titanium Alloys, National Physical Laboratory, 1979.

    Google Scholar 

  22. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  Google Scholar 

  23. B. de Meester, M. Döner, H. Conrad: Metall. Trans. A, 1975, vol. 6, pp. 65–75.

    Article  Google Scholar 

  24. K. Okazaki, H. Conrad: Acta Metall., 1973, vol. 21, pp. 1117–29.

    Article  Google Scholar 

  25. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ, H.L. Fraser: Mater. Sci. Eng. A, 2004, vol. 372, pp. 191–98.

    Article  Google Scholar 

  26. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field: Electron Backscatter Diffraction in Materials Science, Liuwer Acad/Plenum Publisher, New York, 2000.

    Book  Google Scholar 

  27. H. Kimura, Y. Wang, Y. Akiniwa, K. Tanaka, Nihon Kikai Gakkai Ronbunshu, A Hen: Trans. Jpn. Soc. Mech. Eng. Part A, 2005, vol. 71, pp. 1722–28.

    Article  Google Scholar 

  28. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  29. Y.A. Betanda, A.-L. Helbert, F. Brisset, M.-H. Mathon, T. Waeckerlé, T. Baudin: Mater. Sci. Eng. A, 2014, vol. 614, pp. 193–98.

    Article  Google Scholar 

  30. G. Lütjering, J.C. Williams: Titanium, Springer-Verlag, Berlin, 2007.

    Google Scholar 

  31. P.J. Bania: JOM J. Miner. Met. Mater. Soc., 1994, vol. 46, pp. 16–19.

    Article  Google Scholar 

  32. M. Hansen: Constitution of Binary Alloys. McGraw-Hill, New York, 1958.

    Google Scholar 

  33. S. Zherebtsov, G. Salishchev, W. Łojkowski: Mater. Sci. Eng. A, 2009, vol. 515, pp. 43–48.

    Article  Google Scholar 

  34. L. Zeng, T.R. Bieler: Mater. Sci. Eng. A, 2005, vol. 392, pp. 403–14.

    Article  Google Scholar 

  35. P.S. Follansbee, G.T. Gray: Metall. Trans. A, 1989, vol. 20, pp. 863–74.

    Article  Google Scholar 

  36. D.B. Williams, C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, 1996.

    Book  Google Scholar 

  37. R.Z. Valiev, I. V Alexandrov, Y.T. Zhu, T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8.

    Article  Google Scholar 

  38. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2012.

    Google Scholar 

  39. N. Stefansson, S.L. Semiatin, D. Eylon: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3527–34.

    Article  Google Scholar 

  40. S.L. Semiatin, V. Seetharaman, I. Weiss: Mater. Sci. Eng. A, 1999, vol. 263, pp. 257–71.

    Article  Google Scholar 

  41. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, Y.V.R.K. Prasad: Scr. Mater., 1999, vol. 41, pp. 283–88.

    Article  Google Scholar 

  42. A.A. Korshunov, F.U. Enikeev, M.I. Mazurskij, G.A. Salishchev, A. V Muravlem, P. V Chistyakov, O. V Dmitriev: Metally, 1994, vol. 26, pp. 121-26.

    Google Scholar 

  43. S. Zherebtsov, A. Mazur, G. Salishchev, W. Lojkowski: Mater. Sci. Eng. A, 2008, vol. 485, pp. 39–45.

    Article  Google Scholar 

  44. A. V Sergueeva, V. V Stolyarov, R.Z. Valiev, A.K. Mukherjee: Scr. Mater., 2000, vol. 43, pp. 819–24.

    Article  Google Scholar 

  45. I. Weiss, S.L. Semiatin: Mater. Sci. Eng. A, 1999, vol. 263, pp. 243–56.

    Article  Google Scholar 

  46. I. Weiss, S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.

    Article  Google Scholar 

  47. Z. Ji, H. Yang, H. Li: Mater. Sci. Eng. A, 2015, vol. 628, pp. 358–65.

    Article  Google Scholar 

  48. G. Lütjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32–45.

    Article  Google Scholar 

  49. K. Prasad, R. Sarkar, P. Ghosal, D.V. V Satyanarayana, S. V. Kamat, T.K. Nandy: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6733–41.

    Article  Google Scholar 

  50. E.B. Kula, T.S. DeSisto: Am. Soc. Test. Mats., 1996, pp. 3–31.

  51. V.A. Moskalenko, V.I. Startsev, V.N. Kovaleva: Cryogenics, 1980, vol. 20, pp. 503–8.

    Article  Google Scholar 

  52. N.M. Madhava, R.W. Armstrong: Metall. Mater. Trans. B, 1974, vol. 5, pp. 1517–19.

    Article  Google Scholar 

  53. Z.S. Basinski: Proc. R. Soc. London A Math. Phys. Eng. Sci. The Royal Society, 1957, pp. 229–42.

  54. J.C. Williams, R.G. Baggerly, N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33, pp. 837–50.

    Article  Google Scholar 

  55. P.G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–94.

    Google Scholar 

  56. A. Ghaderi, M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 7824–39.

    Article  Google Scholar 

  57. M.A. Meyers, O. Vöhringer, V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  Google Scholar 

  58. J.W. Christian, S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  59. I.A. Akmoulin, M. Niinomi, T. Kobayashi: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1655–66.

    Article  Google Scholar 

  60. K. Okazaki, H. Conrad: Acta Metall., 1973, vol. 21, pp. 1117-29.

    Article  Google Scholar 

  61. Q.Y. Sun, H.C. Gu: Mater. Sci. Eng. A, 2001, vol. 316, pp. 80-86.

    Article  Google Scholar 

  62. M. Reytier, F. Kircher, B. Levesy: AIP Conf. Proc., 2001, vol. 614, pp. 76-83.

    Article  Google Scholar 

  63. Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka, T. Ogata: Cryogenics, 2003, vol. 43, pp. 483-89.

    Article  Google Scholar 

  64. M.S. Binning, P.G. Partridge: Cryogenics, 1984, vol. 24, pp. 97-105.

    Article  Google Scholar 

  65. T. Yuri, Y. Ono, T. Ogata: Cryogenics, 2006, vol. 46, pp. 30-36

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Director, VSSC for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Additional information

Manuscript submitted on June 13, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayan, N., Singh, G., Antony Prabhu, T. et al. Cryogenic Mechanical Properties of Warm Multi-Pass Caliber-Rolled Fine-Grained Titanium Alloys: Ti-6Al-4V (Normal and ELI Grades) and VT14. Metall Mater Trans A 49, 128–146 (2018). https://doi.org/10.1007/s11661-017-4417-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4417-y

Navigation