Skip to main content
Log in

Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing–morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1821–5.

    Article  Google Scholar 

  2. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–7.

    Article  Google Scholar 

  3. H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2005, vol. 21, pp. 1293–302.

    Article  Google Scholar 

  4. C. García-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Forum, 2005, vol. 500–501, pp. 495–502.

    Article  Google Scholar 

  5. H.K.D.H. Bhadeshia: Proc. R. Soc. A Math. Phys. Eng. Sci., 2010, vol. 466, pp. 3–18.

    Article  Google Scholar 

  6. C. GARCIA-MATEO and F.G. CABALLERO: ISIJ Int., 2005, vol. 45, pp. 1736–40.

    Article  Google Scholar 

  7. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol., 2002, vol. 18, pp. 279–84.

    Article  Google Scholar 

  8. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1238–43.

    Article  Google Scholar 

  9. H.-T. Chang, H.-W. Yen, W.-T. Lin, C.-Y. Huang, and J.-R. Yang: Int. Heat Treat. Surf. Eng., 2013, vol. 7, pp. 8–15.

    Article  Google Scholar 

  10. A. Matsuzaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 518–22.

    Article  Google Scholar 

  11. F. Hu, P.D. Hodgson, and K.M. Wu: Mater. Lett., 2014, vol. 122, pp. 240–3.

    Article  Google Scholar 

  12. T. Jiang, H. Liu, J. Sun, S. Guo, and Y. Liu: Mater. Sci. Eng. A, 2016, vol. 666, pp. 207–13.

    Article  Google Scholar 

  13. L. Yuan, Q. Liu, H. Li, and B. Gao: Met. Sci. Heat Treat., 2015, vol. 57, pp. 156–60.

    Article  Google Scholar 

  14. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd edn., Institute of materials, London, 2001.

    Google Scholar 

  15. C. García De Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López: Mater. Charact., 2001, vol. 46, pp. 389–98.

    Article  Google Scholar 

  16. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 874–82.

    Article  Google Scholar 

  17. B.D. Cullity: Phys. Today, 1957, vol. 10, pp. 50–1.

    Article  Google Scholar 

  18. T. Kaneshita, G. Miyamoto, and T. Furuhara: Acta Mater., 2017, vol. 127, pp. 368–78.

    Article  Google Scholar 

  19. H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett, and P.D. Hodgson: Acta Mater., 2017, vol. 127, pp. 426–37.

    Article  Google Scholar 

  20. H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A., 1990, vol. 21(3), 767—797.

    Article  Google Scholar 

  21. D.Q. Kong, Q.S. Liu, and Z.J. Dong: J. Iron Steel Res. Int., 2013, vol. 20, pp. 45–9.

    Article  Google Scholar 

  22. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1996, vol. 12, pp. 233–6.

    Article  Google Scholar 

  23. G.R. Purdy and M. Hillert: Acta Metall., 1984, vol. 32, pp. 823–8.

    Article  Google Scholar 

  24. C. García-Mateo and F.G. Caballero: Mater. Trans., 2005, vol. 46, pp. 1839–46.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from Industrial Research and Consultancy Centre (IRCC), Indian Institute of Technology, Bombay. We also appreciate the provision of laboratory facilities by the Centre of Excellence in Steels (CoEST) and Funding for Infrastructure in Science and Technology (SR/FST/ETII-023/2012(C)). Most importantly we will like to thank Professor N.B. Ballal and Mr. Amit Joshi for their help and guidance in steel making.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Singh.

Additional information

Manuscript submitted September 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kumar, A. & Singh, A. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels. Metall Mater Trans A 49, 1348–1354 (2018). https://doi.org/10.1007/s11661-018-4492-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4492-8

Navigation