Skip to main content
Log in

High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structure–property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains (~ 100 μm). The cellular structure grows along the 〈100〉 crystallographic directions. However, texture analysis revealed that the main 〈100〉 texture component is inclined by ~15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of ~1 × 1015 m−2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with 〈111〉 aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Shamsaei, A. Yadollahi, L. Bian, and S. Thompson : Addit. Manuf., 2015, vol. 8, pp. 12-35.

    Article  Google Scholar 

  2. J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Rap. Prototyp. J., 2005, vol. 11, pp. 26-36.

    Article  Google Scholar 

  3. Q. Jia and D. Gu: J. Alloys Compd., 2014, vol. 585, pp. 713–721.

    Article  Google Scholar 

  4. J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown, and J. Sienz: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 869–879.

    Article  Google Scholar 

  5. L. Thijs, K. Kempen, J. Kruth, and J. Van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809-1819.

    Article  Google Scholar 

  6. Harry Bhadeshia and Robert Honeycombe (2017): Steels: Microstructure And Properties. Cambridge, MA : Butterworth-Heinemann, and imprint of Elsevier

    Google Scholar 

  7. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, and G. Miranda: Addit. Manuf., 2017, vol. 16, pp. 81-89.

    Article  Google Scholar 

  8. K. Saeidi: Stainless steel fabricated by laser melting: Scaled-down structural hierarchies and microstructural heterogeneities, Stockholm University, Stockholm, Sweden, 2016.

    Google Scholar 

  9. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang: Appl. Surf. Sci., 2010, vol. 256, pp. 4350-4356.

    Article  Google Scholar 

  10. S. Dadbakhsh, L. Hao, and N. Sewell: Rapid Prototyp. J., 2012, vol. 18, no. 3, pp. 241–249.

    Article  Google Scholar 

  11. B. Zhang, L. Dembinski, and C. Coddet: Mater. Sci. Eng. A, 2013, vol. 584, pp. 21–31.

    Article  Google Scholar 

  12. [12] D. Wang, C. Song, Y. Yang, and Y. Bai: Mater. Des., 2016, vol. 100, pp. 291–299.

    Article  Google Scholar 

  13. Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen: J. Nucl. Mater., 2016, 470, pp. 170-178.

    Article  Google Scholar 

  14. Z. Sun, X. Tan, S. Tor, and W. Yeong: Mater. Des., 2016, vol. 104, pp. 197-204.

    Article  Google Scholar 

  15. J. Suryawanshi, K. Prashanth, and U. Ramamurty: Mater. Sci. Eng. A, 2017, vol. 696, pp. 113-121.

    Article  Google Scholar 

  16. C. Haase, J. Bültmann, J. Hof, S. Ziegler, S. Bremen, C. Hinke, A. Schwedt, U. Prahl, and W. Bleck: Materials, 2017, vol. 10, p. 56.

    Article  Google Scholar 

  17. A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen: Mater. Sci. Eng. A, 2016, vol. 678, pp. 365-376.

    Article  Google Scholar 

  18. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng: J. Mater. Process. Technol., 2014, vol. 214, pp. 2660–2667.

    Article  Google Scholar 

  19. H. D. Carlton, A. Haboub, G. F. Gallegos, D. Y. Parkinson, and A. A. MacDowell: Mater. Sci. Eng. A, 2016, 651, pp. 406–414.

    Article  Google Scholar 

  20. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato J. Mater. Process.Tech., 2017, 249, pp. 255-263.

    Article  Google Scholar 

  21. D. Tomus, Y. Tian, P. Rometsch, M. Heilmaier, M. Heilmaier and X. Wu: Mater. Sci. Eng. A, 2016, vol. 667, pp. 42-53.

    Article  Google Scholar 

  22. I. Tolosa, F. Garciandía, F. Zubiri, and F. Zapirain: Int. J.Adv. Manu. Tech., 2010, vol. 51, pp. 639-647.

    Article  Google Scholar 

  23. X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, and Z. Shen: J. Alloys Compd., 2015, vol. 631, pp. 153–164.

    Article  Google Scholar 

  24. EOS GmbH. EOS Stainless Steel 316L material data sheet. [Online] https://cdn1.scrvt.com/eos/77d285f20ed6ae89/dd6850c010d3/EOSStainlessSteel316L.pdf. Accessed 21 August 2017

  25. ASTM E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: American Society for Testing and Materials, 2016.

    Google Scholar 

  26. ASTM E1019-11: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. West Conshohocken: American Society for Testing and Materi.

  27. D. Black, D. Windover, A. Henins, D. Gil, J. Filliben, and J.P. Cline : Adv. X-ray Anal., 2009, vol. 53, pp. 172-179.

    Google Scholar 

  28. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–3175.

    Article  Google Scholar 

  29. G. Ribárik, J. Gubicza, and T. Ungár: Mater. Sci. Eng. A, 2004, vol. 387, pp. 343-347.

    Article  Google Scholar 

  30. G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Crystallogr., 2001, vol. 34, pp. 669–676.

    Article  Google Scholar 

  31. M. El-Tahawy, Y. Huang, T. Um, H. Choe, J. Lábár, T.G. Langdon and J. Gubicza: J. Mater. Res. Technol., 2017 (in press).

  32. M. Mangalick and N. Fiore, Trans Metall. Soc. AIME, 1968, vol. 242, p. 2363.

    Google Scholar 

  33. A. Borbély, J. Dragomir-Cernatescu, G. Ribárik and T. Ungár: J. Appl.Crystallogr., 2003, vol. 36, pp. 160-162.

    Article  Google Scholar 

  34. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, “Mater. Des., 2015, vol. 81, pp. 44-53.

    Article  Google Scholar 

  35. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan and P.W. Shindo: J. Mater. Res. Technol., 2012, vol. 1, pp. 167–177.

    Article  Google Scholar 

  36. L. Facchini, N. Vicente Jr., I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari: Adv. Eng. Mater., 2010, vol. 12, pp. 184-188.

    Article  Google Scholar 

  37. K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, and Z. J. Shen: Alloys Compd., 2015, vol. 633, pp. 463–469.

    Article  Google Scholar 

  38. M. L. Sistiaga, S. Nardone, C. Hautfenne, and J. Van Humbeeck: Annual International Solid Freeform Fabrication Symposium, 2016, pp. 558–565, Austin.

  39. F. Geiger, K. Kunze, and T. Etter: Mater. Sci. Eng. A, 2016, vol. 661, pp. 240-246.

    Article  Google Scholar 

  40. J.R. Taylor: An Introduction to Error Analysis — The Study of Uncertainties in Physical Measurements (Second ed.), University Science Books, Sausalito, California (1997).

    Google Scholar 

  41. D. Zhang, W. Niu, X. Cao, and Z. Liu: Mater. Sci. Eng. A, 2015, vol. 644, pp. 32–40.

    Article  Google Scholar 

  42. W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen: Mater. Sci. Eng. A, 2017, vol. 689, pp. 220–232.

    Article  Google Scholar 

  43. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–2746.

    Article  Google Scholar 

  44. J.C. Li: J. Appl. Phys., 1962, vol. 33, pp. 2958-2965.

    Article  Google Scholar 

  45. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–6462.

    Article  Google Scholar 

  46. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2017 (in press).

  47. O. Bouaziz, S. Allain, and C. Scott: Scr. Mater., 2008, vol. 58, pp. 484–487.

    Article  Google Scholar 

  48. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–3560.

    Article  Google Scholar 

  49. H. Beladi, I. B. Timokhina, Y. Estrin, J. Kim, B. C. De Cooman, and S. K. Kim: Acta Mater., 2011, vol. 59, pp. 7787–7799.

    Article  Google Scholar 

  50. W. Mullins and R. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444-451.

    Article  Google Scholar 

  51. R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, pp. 49-74.

    Article  Google Scholar 

  52. A. Glezer, and I. Permyakova: Melt-Quenched Nanocrystals. Boca Raton : CRC Press (Taylor & Francis Group imprint), 2013.

  53. V. Zolotorevsky, N. Belov, and M. Glazoff: Casting aluminum alloys. First. Amsterdam : Elsevier Science, 2007.

    Google Scholar 

  54. D. Tomus, Y. Tian, P. A. Rometsch, M. Heilmaier, and X. Wu: Mater. Sci. Eng. A, 2016, vol. 667, pp. 42–53.

    Article  Google Scholar 

  55. J. Walker, K. Berggreen, A. Jones, and C. Sutcliffe: Adv. Eng. Mater., 2009, vol. 11, pp. 541-546.

    Article  Google Scholar 

  56. S. Murugesan, P. Kuppusami, E. Mohandas, and M. Vijayalakshmi: Mater. Lett., 2012, vol. 67, pp. 173–176.

    Article  Google Scholar 

  57. C. Herrera, R. L. Plaut, and A. F. Padilha: Mater. Sci. Forum, 2007, vol. 550, pp. 423–428.

    Article  Google Scholar 

  58. K. Saeidi, X. Gao, Y. Zhong, and Z. J. Shen: Mater. Sci. Eng. A, 2015, vol. 625, pp. 221–229.

    Article  Google Scholar 

  59. G. Langford and M. Cohen, Metall. Mater. Trans., 1970, vol. 1, pp. 1478-1480.

    Article  Google Scholar 

  60. M. Staker and D. Holt: Acta Metall., 1972, vol. 20, pp. 569-579.

    Article  Google Scholar 

  61. D. Kuhlmann-Wilsdorf: Metall. Trans., 1970, vol. 1, pp. 3173-3179.

    Google Scholar 

  62. F. Lavrentev: Mater. Sci. Eng., 1980, vol. 46, pp. 191-208.

    Article  Google Scholar 

  63. X. Feaugas and H. Haddou: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2329-2340.

    Article  Google Scholar 

  64. G. Dini, R. Ueji, A. Najafizadeh, and S. M. Monir-Vaghefi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2759–2763.

    Article  Google Scholar 

  65. B. Hutchinson and N. Ridley: Scr. Mater., 2006, vol. 55, pp. 299-302.

    Article  Google Scholar 

  66. M. Kassner: Acta Mater., 2004, vol. 52, pp. 1-9.

    Article  Google Scholar 

  67. B. Kashyap and K. Tangri: Acta Metall. Mater., 1995, vol. 43, pp. 3971-3981.

    Article  Google Scholar 

  68. J. W. Hutchinson: Proc. R. Soc. London A Math. Phys. Eng. Sci.,1976, vol. 348, pp. 101-127.

    Article  Google Scholar 

  69. C.N. Tome, C.R. Canova, and U.F. Kocks: Acta Mater., 1984, vol. 32, pp. 1637-1653.

    Article  Google Scholar 

  70. Y. F. Shen, X. X. Li, X. Sun, Y. D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–522.

    Article  Google Scholar 

  71. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-446.

    Article  Google Scholar 

  72. F. Pickering: Physical metallurgy and the design of steels, Applied Science Publishing Ltd, Essex, 1978

    Google Scholar 

  73. C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D.A. Molodov, Acta Mater., 2017, vol. 122, pp. 332–343.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Naval Sea Systems Command and the Office of Naval Research for sponsoring the research discussed in this paper. The work was mentored by Naval Surface Warfare Center, Dahlgren Division, as a project through the Naval Engineering Education Consortium Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shamsujjoha.

Additional information

Manuscript submitted September 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsujjoha, M., Agnew, S.R., Fitz-Gerald, J.M. et al. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained. Metall Mater Trans A 49, 3011–3027 (2018). https://doi.org/10.1007/s11661-018-4607-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4607-2

Navigation