Skip to main content
Log in

High Temperature Uniaxial Compression and Stress–Relaxation Behavior of India-Specific RAFM Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress–relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress–relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10−3 s−1. The creep properties of the steel at different temperatures were predicted from the stress–relaxation test. The Norton’s stress exponent (n) was found to decrease with the increasing temperature. Using Bird–Mukherjee–Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m ~ 0.06 was observed at 600 °C. The activation volume (V*) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.A.J. Forsik: PhD Thesis, University of Cambridge, 2009.

  2. R. L. Klueh, and A.T. Nelson, Journal of Nuclear Materials, 2007. 371(1): p. 37-52.

    Article  Google Scholar 

  3. B. K. Choudhary, V. S. Srinivasan and M. D. Mathew, Materials at High Temperatures 2011, vol. 28, pp. 155-161.

    Article  Google Scholar 

  4. B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Möslang and G. R. Odette, Journal of Nuclear Materials 2000, vol. 283, pp. 52-59.

    Article  Google Scholar 

  5. A. Hishinuma, ., A. Kohyama, R. L. Klueh, D. S. Gelles, W. Dietz and K. Ehrlich,, Journal of Nuclear Materials, 1998. 258: p. 193-204.

    Article  Google Scholar 

  6. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R. J. Kurtz, R. Lindau, T. Muroga, G. R. Odette, B. Raj, R. E. Stoller, L. Tan, H. Tanigawa, A. A. F. Tavassoli, T. Yamamoto, F. Wan and Y. Wu, Journal of Nuclear Materials, 2013. 442(1): p. S2-S8.

    Article  Google Scholar 

  7. K. Laha, S. Saroja, A. Moitra, R. Sandhya, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2013, vol. 439, pp. 41-50.

    Article  Google Scholar 

  8. S. K. Albert, K. Laha, A. K. Bhaduri, T. Jayakumar and E. Rajendrakumar, Fusion Engineering and Design 2016, vol. 109, pp. 1422-1431.

    Article  Google Scholar 

  9. M. D. Mathew, J. Vanaja, K. Laha, G. Varaprasad Reddy, K. S. Chandravathi and K. Bhanu Sankara Rao, Journal of Nuclear Materials 2011, vol. 417, pp. 77-80.

    Article  Google Scholar 

  10. R. Kemp: Introduction to Fusion Power Plant Materials, Department of Materials Science and Metallurgy, University of Cambridge, 2006. http://www.msm.cam.ac.uk/phase-trans/2006/Irradiated_Steel/Irradiated_Steel.html.

  11. D. P. Rao Palaparti, B. K. Choudhary, E. Isaac Samuel, V. S. Srinivasan and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 538, pp. 110-117.

    Article  Google Scholar 

  12. J. Vanaja, K. Laha, Shiju Sam, M. Nandagopal, S. Panneer Selvi, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Journal of Nuclear Materials 2012, vol. 424, pp. 116-122.

    Article  Google Scholar 

  13. Y. Li, Q. Huang, Y. Wu, T. Nagasaka and T. Muroga, Journal of Nuclear Materials 2007, vol. 367, pp. 117-121.

    Article  Google Scholar 

  14. Enrico Lucon and Willy Vandermeulen, Journal of Nuclear Materials 2009, vol. 386, pp. 254-256.

    Article  Google Scholar 

  15. B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau and G. LeMarois, Fusion Engineering and Design 2003, vol. 69, pp. 197-203.

    Article  Google Scholar 

  16. P. Fernández, A. M. Lancha, J. Lapeña, R. Lindau, M. Rieth and M. Schirra, Fusion Engineering and Design 2005, vol. 75, pp. 1003-1008.

    Article  Google Scholar 

  17. J. Vanaja, K. Laha, R. Mythili, K. S. Chandravathi, S. Saroja and M. D. Mathew, Materials Science and Engineering: A 2012, vol. 533, pp. 17-25.

    Article  Google Scholar 

  18. Wen-Tao Wang, Xun-Zhong Guo, Bo Huang, Jie Tao, Hua-Guan Li and Wen-Jiao Pei, Materials Science and Engineering: A 2014, vol. 599, pp. 134-140.

    Article  Google Scholar 

  19. J. T. A. Pollock, S. G. Barton and R. C. Clissold, Materials Science and Engineering 1981, vol. 49, pp. 155-171.

    Article  Google Scholar 

  20. Krishna Guguloth, J. Swaminathan, Nilima Roy and R. N. Ghosh, Materials Science and Engineering: A 2017, vol. 684, pp. 683-696.

    Article  Google Scholar 

  21. Yang-Il Jung, Yong-Nam Seol, Byoung-Kwon Choi and Jeong-Yong Park, Materials & Design 2012, vol. 42, pp. 118-123.

    Article  Google Scholar 

  22. Kazuyuki Furuya, Eiichi Wakai, Masami Ando, Tomotsugu Sawai, Akira Iwabuchi, Kazuyuki Nakamura and Hiroshi Takeuchi, Fusion Engineering and Design 2003, vol. 69, pp. 385-389.

    Article  Google Scholar 

  23. Dipti Samantaray, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 5204-5211.

    Article  Google Scholar 

  24. G. Yu, N. Nita and N. Baluc, Fusion Engineering and Design 2005, vol. 75, pp. 1037-1041.

    Article  Google Scholar 

  25. P. Anderson, T. Bellgardt and F. L. Jones, Materials Science and Technology 2003, vol. 19, pp. 207-213.

    Article  Google Scholar 

  26. Saber Khayatzadeh, David W. J. Tanner, Christopher E. Truman, Peter E. J. Flewitt and David J. Smith, Engineering Fracture Mechanics 2017, vol. 175, pp. 57-71.

    Article  Google Scholar 

  27. K. Sawada, K. Kubo and F. Abe, Materials Science and Engineering: A 2001, vol. 319, pp. 784-787.

    Article  Google Scholar 

  28. Apu Sarkar, Sandeep A Chandanshive, Manoj K Thota and Rajeev Kapoor, Journal of Alloys and Compounds 2017, vol. 703, pp. 56-66.

    Article  Google Scholar 

  29. G.E. Dieter: Mechanical Metallurgy, SI Metric ed., 1988, pp. 447–48.

  30. B. Kombaiah and K. Linga Murty, Philosophical Magazine 2015, vol. 95, pp. 1656-1679.

    Article  Google Scholar 

  31. W.D. Callister: Material Science and Engineering, 7th ed., 2007, p. 119.

  32. Dipti Samantaray, C. Phaniraj, Sumantra Mandal and A. K. Bhaduri, Materials Science and Engineering: A 2011, vol. 528, pp. 1071-1077.

    Article  Google Scholar 

  33. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics.

  34. B. N. Mehrotra and K. Tangri, Acta Metallurgica 1980, vol. 28, pp. 1385-1394.

    Article  Google Scholar 

  35. H. Conrad, JOM 1964, vol. 16, pp. 582-88.

    Article  Google Scholar 

Download references

Acknowledgments

Naimish would like to thank Dr. Rajeev Kapoor, Head, Deformation Science Section, Mechanical Metallurgy Division, BARC for his valuable support during this work. Technical help provided by Mr. Bhupendra Kumawat of MMD, BARC for mechanical testing is thankfully acknowledged. Naishalkumar Shah of IIT Madras is gratefully acknowledged for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Sarkar.

Additional information

Manuscript submitted September 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.S., Sunil, S. & Sarkar, A. High Temperature Uniaxial Compression and Stress–Relaxation Behavior of India-Specific RAFM Steel. Metall Mater Trans A 49, 2644–2653 (2018). https://doi.org/10.1007/s11661-018-4641-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4641-0

Navigation