Skip to main content
Log in

Correlation of the Solidification Path with As-Cast Microstructure and Precipitation of Ti,Nb(C,N) on a High-Temperature Processed Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solidification path of a high-temperature processed (HTP) X65 sour service steel with 0.039 wt pct C, 0.09 wt pct Nb, and 0.54 wt pct Mn and its effect on the segregation, microstructure, and precipitation distribution of Ti,Nb(C,N) was studied using optical and confocal microscopy, scanning electron microscopy (SEM), and computational simulation (Thermo-Calc and DICTRA). The results were compared with those obtained for another commercial microalloyed steel, containing 0.09 wt pct C, 0.04 wt pct Nb, and 0.97 wt pct Mn. The results indicate that the main parameter that influences microsegregation is the C content, which has a large influence on the solidification path. The difference in segregation between different positions in industrial continuous cast slabs of the steels was also observed, as expected. The larger solidification interval (TL-TS) of the commercial microalloyed steel indicates the formation of a solidification front that has higher solute concentration than the X65 HTP sour service steel, which concurs with the higher macro- and microsegregation observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. G. Krauss: Metall. Mater. Trans. A, 1978, vol. 34A, pp. 781–92.

    Google Scholar 

  2. G. Lesoult: Mater. Sci. Eng., A, 2005, vol. 413A, pp. 19–29.

    Article  Google Scholar 

  3. T. Brune, K. Kortzak, D. Senk, N. Reuther, and M. Schäperkötter: Steel Res. Int., 2015, vol. 86, pp. 33–39.

    Article  Google Scholar 

  4. J. Zhao, Z. Jiang, and D. Wei: Adv. Mater. Res., 2013, vols. 652–654, pp. 2465–68.

    Article  Google Scholar 

  5. E.J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935–49.

    Article  Google Scholar 

  6. W.A. Spitzig: Metall. Trans. A, 1983, vol. 14A, pp. 271–83.

    Article  Google Scholar 

  7. C. Zhou and R. Priestner: ISIJ Int., 1996, vol. 36, pp. 1397–1405.

    Article  Google Scholar 

  8. E.J. Palmiere, C.I. Garcia, and A.J. Deardo: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 951–60.

    Article  Google Scholar 

  9. C. Fossaert, G. Rees, T. Maurickx, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21–30.

    Article  Google Scholar 

  10. W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler, and F. Hofer: Acta Mater., 2002, vol. 50, pp. 735–47.

    Article  Google Scholar 

  11. M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis: Philos. Mag. Lett., 2007, vol. 87, pp. 645–56.

    Article  Google Scholar 

  12. Z. Chen, M.H. Loretto, and R.C. Cochrane: Mater. Sci. Technol., 1987, vol. 3, pp. 836–44.

    Article  Google Scholar 

  13. M.G. Lage and A. Costa e Silva: J. Mater. Res. Technol., 2015, vol. 4, pp. 353–58.

    Article  Google Scholar 

  14. S. Zheng, C. Davis, and M. Strangwood: Mater. Charact., 2014, vol. 95, pp. 94–104.

    Article  Google Scholar 

  15. E. Scheil: Z. Metallkd., 1942, vol. 34, pp. 70–72.

    Google Scholar 

  16. M.C. Flemings: Solidification Processing, McGraw-Hill, Inc., New York, NY, 1974, pp. 160–67.

    Google Scholar 

  17. D. Zhang: Ph.D. Thesis, The University of Birmingham, Birmingham, United Kingdom, 2015.

  18. A. Suzuki, T. Suzuki, Y. Nagoaka, and Y. Iwata: J. Jpn. Inst. Met. Mater., 1968, vol. 9, pp. 1301–05.

    Article  Google Scholar 

  19. S. Roy, S. Patra, S. Neogy, A. Laik, S.K. Choudhary, and D. Chakrabarti: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1845–60.

    Article  Google Scholar 

  20. M.C. Carboni, R.A. Mesquita, E.B. Cruz, D. Fridman, M.A.S. Nogueira: 42º International Steelmaking Seminar, Salvador, Brasil, 2011, pp. 1–13.

    Google Scholar 

  21. J. Stock: Master Thesis, Colorado School of Mines, Golden, CO, 2013.

  22. J.M. Gray: Companhia Brasileira de Metalurgia e Mineração—CBMM, Proc. Microalloyed Steels for Sour Service Int. Sem., São Paulo, Brasil, 2012, CBMM, Araxá, https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=15521.

  23. K. Hulka, P. Bordignon, and J.M. Gray: Niobium Technical Report, Niobium Technical, 2004, pp. 1–32.

  24. O. Yasuhide and Y. Akira: Corrosion Liquid for Exposing Dendrite of Carbon Steel or Low-Alloy Steel Cast Piece, JP Patent 2001-289839A, 2001.

  25. A.L.V. Costa e Silva: Technol. Metall. Mater. Miner., 2014, vol. 11, pp. 3–13.

    Article  Google Scholar 

  26. Y. El-Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  Google Scholar 

  27. Q. Chen and B. Sundman: J. Jpn. Inst. Met. Mater., 2002, vol. 43, pp. 551–59.

    Google Scholar 

  28. J. Campbell: Castings, 2nd ed., Butterworth-Heinemann, Oxford, United Kingdom, 2003, pp. 131–33.

    Google Scholar 

  29. H. Luo, L.P. Karjalainen, D.A. Porter, H.M. Liimatainen, and Y. Zhang: ISIJ Int., 2002, vol. 42, pp. 273–82.

    Article  Google Scholar 

  30. A. Ruiz-Aparicio: Master Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2000.

  31. M. Kapoor, R. O’Malley, and G.B. Thompson: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1984–95.

    Article  Google Scholar 

  32. D. Chakrabarti, C. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.

    Article  Google Scholar 

  33. S. Roy, D. Chakrabarti, and G.K. Dey: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 717–28.

    Article  Google Scholar 

  34. C. Davis and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 1126–33.

    Article  Google Scholar 

  35. A. Schneider, C. Stallybrass, J. Konrad, A. Kulgemeyer, H. Meuser, and S. Meimeth: Int. J. Mater. Res., 2008, vol. 99, pp. 674–79.

    Article  Google Scholar 

  36. K. Harste, B. Weisgerber, K.H. Tacke, J. Gnauk, M. Bobadilla, G. Lovato, M. Crocenzo, and T. Hätönen: Report No. EUR 19491, Technical Steel Research, European Commission, 2001.

Download references

Acknowledgments

The authors thank CBMM and Gerdau Ouro Branco for technical support during the development of this work and for providing the material for this study. ACS acknowledges the CNPq, CAPES, and FAPERJ support and MSA also thanks the CNPq institution for granting an academic scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pérez Escobar.

Additional information

Manuscript submitted January 08, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, D.P., Castro, C.S.B., Borba, E.C. et al. Correlation of the Solidification Path with As-Cast Microstructure and Precipitation of Ti,Nb(C,N) on a High-Temperature Processed Steel. Metall Mater Trans A 49, 3358–3372 (2018). https://doi.org/10.1007/s11661-018-4717-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4717-x

Navigation