Skip to main content
Log in

Effect of Zinc Concentration on the Structural, Optical, and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by Low-Temperature Hydrothermal Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zinc-substituted cobalt ferrites Co1−xZnxFe2O4 (x = 0.0 to 0.7) nanoparticles have been synthesized using the hydrothermal method. The pure cubic spinel powder samples prepared were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy. It is found that the lattice parameter increases with Zn substitution. The average crystallite size of the particles decreases gradually from 20 to 10 nm with the increase in Zn-content, which is confirmed by transmission electron spectroscopy micrographs. The direct and indirect band gap of Co1−xZnxFe2O4 determined from UV–Vis measurements decreases with the increase of Zn concentration. The magnetic properties have been investigated by physical property measurement system and vibrating sample magnetometer. The saturation magnetization increases slightly from 71.38 emu g−1 (x = 0) to 77.59 emu g−1 (x = 0.1), then decrease with the increase in Zn substitution. Nevertheless, the coercivity significantly decreases with Zn concentrations, which can be explained using Yafet–Kittel model and the distribution of Fe3+ ions among octahedral and tetrahedral sites in samples. This result is further confirmed by photoluminescence emission spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Masala and R. Seshadri, J. Am. Chem. Soc., 2005, vol. 127(26), pp. 9354-55.

    Article  Google Scholar 

  2. J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao, F. Gao, Q. Gong, B. Song, X. Shuai, H. Ai, Z. Gu, Biomaterials, 2009, vol. 30(15), pp. 2919-28.

    Article  Google Scholar 

  3. C. Xiangfeng, J. Dongli, Z. Chenmou, Sens. Actuator B-Chem., 2007, vol. 123(2), pp. 793-797.

    Article  Google Scholar 

  4. A. M. Wahba, M. B. Mohamed, N.G. Imam, J. Magn. Magn. Mater., 2016, vol. 408, pp. 51-59.

    Article  Google Scholar 

  5. P. T. Phong, P. H. Nam, D. H. Manh, I. –J. Lee, J. Magn. Magn. Mater., 2017, vol. 433, pp. 76-83.

    Article  Google Scholar 

  6. J.J. Versluijs, M.A. Bari, and J.M.D. Coey: Phys. Rev. Lett., 2001, vol. 87, art. no. 026601.

  7. S. Bhukal, M. Dhiman, S. Bansal, M. K. Tripathid, S. Singhal, RSC Adv., 2016, vol. 6(2), pp. 1360-75.

    Article  Google Scholar 

  8. H. Yang, C. Zhang, X. Shi, H. Hu, X. Du, Y. Fang, Y. Ma, H. Wu, S. Yang, Biomaterials, 2010, vol. 31, pp. 3667-73.

    Article  Google Scholar 

  9. D. Varshney, K. Verma, A. Kumar, J. Mol. Struct., 2011, vol. 1006(1-3), pp. 447-452.

    Article  Google Scholar 

  10. S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, J. Am. Chem. Soc., 2004, vol. 126(1), pp. 273-9.

    Article  Google Scholar 

  11. H.L. Zhu, X.Y. Gu, D.T. Zuo, Z.K. Wang, N.Y. Wang, and K.H. Yao: Nanotechnology, 2008, vol. 19, art. no. 405503.

  12. M. P. Pileni, Adv. Funct. Mater., 2001, vol. 11(5), pp. 323-336.

    Article  Google Scholar 

  13. P. T. Phong, N. X. Phuc, P. H. Nam, N. V. Chien, D. D. Dung, P. H. Linh, Physica B, 2018, vol. 531, pp. 30-34.

    Article  Google Scholar 

  14. P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X. S. Zhao, Langmuir, 2013, vol. 29(28), pp. 8997-9003.

    Article  Google Scholar 

  15. R. S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, J. Magn. Magn. Mater., 2015, vol. 378, pp. 190-9.

    Article  Google Scholar 

  16. M. Atif, S. K. Hasanain, M. Nadeem, Solid State Commun., 2006, vol. 138, pp. 416-421.

    Article  Google Scholar 

  17. A. Manikandan, L. John Kennedy, M. Bououdina, J. Judith Vijaya: J. Magn. Magn. Mater. 2014; 349: 249-258.

    Article  Google Scholar 

  18. M. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, A. Lančok, M. Dlouhá, and S. Vratislav: Nanotechnology, 2011 vol. 22, art. no. 345701.

  19. G. Aquilanti, A. Cognigni and M. Anis-ur-Rehman, J. Supercond. Novel Magn., 2011, vol. 24(1-2), pp. 659-663.

    Article  Google Scholar 

  20. S. Jadhav, S. Shirsath, S. Patange, and K. Jadhav: J. Appl. Phys., 2010, vol. 108, art. no. 093920.

  21. D. S. Nikam, S. V. Jadhav, V. M. Khot, R. A. Bohara, C. K. Hong, S. S. Malib, S. H. Pawar, RSC Adv., 2015, vol. 5(30), pp. 2338-45.

    Article  Google Scholar 

  22. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, and I. Nakatani: Phys. Rev. B, 2001, vol. 63, art. no. 184108.

  23. M. A. F. Ramalho, L. Gama, S. G. Antonio, C. O. Paiva-Santos, E. J. Miola, R. H. G. A. Kiminami, A. C. F. M. Costa, J. Mater. Sci., 2007, vol. 42, pp. 3603-06.

    Article  Google Scholar 

  24. R. K. D. Misra, S. Gubbala, A. Kale, W. F. Egelhoff Jr., Mater. Sci. Eng. B, 2004, vol. 111(2-3), pp. 164-174.

    Article  Google Scholar 

  25. G. Vaidyanathan, S. Sendhilnathan, R. Arulmurugan, J. Magn. Magn. Mater., 2007, vol. 313(2), pp. 293-9.

    Article  Google Scholar 

  26. P. Motavallian, B. Abasht, H. Abdollah-Pour, J. Magn. Magn. Mater., 2018, vol. 451, pp. 577-586.

    Article  Google Scholar 

  27. A.V. Raut, R.S. Barkule, D. R. Shengule, K. M. Jadhav, J. Magn. Magn. Mater., 2014, vol. 358-359, pp. 87-92.

    Article  Google Scholar 

  28. J. Wan, W. Cai, X. Meng, E. Liu, Chem. Commun., 2007, vol. 47, pp. 5004-06.

    Article  Google Scholar 

  29. E. Hema, A. Manikandan, M. Gayarthi, M. Durka, S. A. Antony, B. R. Venkatraman, J. Nanosci. Nanotechnol., 2016, vol. 16(6), pp. 5929-43.

    Article  Google Scholar 

  30. Y. I. Kim, D. Kim, C. S. Lee, Physica B, 2003, vol. 337(1-4), pp. 42-51.

    Article  Google Scholar 

  31. R. Rani, S. K. Sharma, K. R. Pirota, M. Knobel, S. Thakur, M. Singh, Ceram. Int., 2012, vol. 38(3), pp. 2389-94.

    Article  Google Scholar 

  32. M. Sundararajan, L. John Kennedy, J. Judith Vijaya, U. Aruldoss, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, vol. 140, pp. 421-30.

    Article  Google Scholar 

  33. P. Chandramohan, M. P. Srinivasan, S. Velmurugan, S. V. Narasimhan, J. Solid. State Chem., 2011, vol. 184(1), pp. 89-96.

    Article  Google Scholar 

  34. T. L. Phan, N. Tran, D. H. Kim, N. T. Dang, D. H. Manh, T. N. Bach, C. L. Liu, B. W. Lee, J. Electron. Mater., 2017, vol. 46(7), pp. 4214-26.

    Article  Google Scholar 

  35. A. Manohar, C. Krishnamoorth: J. Mater. Sci. Mater. Electron. 2018, vol. 29(1), pp. 737-745.

    Article  Google Scholar 

  36. S. Ayyappan, S. Mahadevan, P. Chandramohan, M. P. Srinivasan, J. Philip, B. Raj, J. Phys. Chem. C, 2010, vol. 114(14), pp. 6334-41.

    Article  Google Scholar 

  37. J. Tauc: Amorphous and Liquid Semiconductors, J. Tauc, ed., Plenum, New York, 1974, Chap. 4

  38. C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, and J. Kortus: J. Appl. Phys., 2013, vol. 113 (8), art. no. 084101.

  39. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Nanoscale Res. Lett., 2017, vol. 12, p. 141.

    Article  Google Scholar 

  40. H. Bai, Z. Liu, D. D. Sun, Int. J. Hydrogen Energy, 2012, vol. 37(19), pp. 13998-14008.

    Article  Google Scholar 

  41. C.Q. Sun: Synthesis, Properties, and Applications of Oxide Nanomaterials, J.A. Rodriguez, M. Fernandez-Garcia, eds., Wiley, Hoboken, NJ, 2007, pp. 7–47.

  42. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, J. Magn. Magn. Mater., 2018, vol. 460, pp. 89-94.

    Article  Google Scholar 

  43. D. Ravinder, Mater. Lett., 1999, vol. 40(5), pp. 205-208.

    Article  Google Scholar 

  44. A. Manikandan, J. J. Vijaya, L. J. Kennedy, M. Bououdina, Ceram. Int., 2013, vol. 39(5), pp. 5909-17.

    Article  Google Scholar 

  45. N. Pathak, S. K. Gupta, K. Sanyal, M. Kumar, R. M. Kadam, V. Natarajan, Dalton Trans., 2014, vol. 43, pp. 9313-23.

    Article  Google Scholar 

  46. M. Suzuki, S.I. Fullem, and I.S. Suzuki: Phys. Rev. B, 2009, vol. 79 art. no. 024418.

  47. S. Morup, M. F. Hansen, C. Frandsen, Beilstein J. Nanotechnol., 2010, vol. 1, pp 182-190.

    Article  Google Scholar 

  48. P. T. Phong, D. H. Manh, L. H. Nguyen, D. K. Tung, N. X. Phuc, I. –J. Lee, J. Magn. Magn. Mater., 2014, vol. 368, pp. 240-5.

    Article  Google Scholar 

  49. K. E. Mooney, J. A. Nelson, M. J. Wagner, Chem. Mater., 2004, vol. 16(16), pp. 3155-61.

    Article  Google Scholar 

  50. K. H. J. Buschow: Handbook of Magnetic Materials, Vol. 8. North Holland: Amsterdam (1995), p 212.

    Google Scholar 

  51. F. Luis, J.M. Torres, L.M. García, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar, J.-L. Maurice, and A. Vaurès: Phys. Rev. B, 2002, vol. 65, art. no. 094409.

  52. Schrefl, J. Fidler, H. Kronmuller, Phys. Rev. B, 1994, vol. 49, p. 6100.

    Article  Google Scholar 

  53. J. P. Wang, D. -H. Han, H. -L. Luo, Q. -X. Lu, Y. -W. Sun, Appl. Phys. A, 1995, vol. 61(1), pp. 407-415.

    Article  Google Scholar 

  54. P. T. Phong, D. H. Manh, P. H. Nam, D. K. Tung, N. X. Phuc, In-Ja Lee, Physica B, 2014, vol. 444, pp. 94-102.

    Article  Google Scholar 

  55. A. Franco, F.L.A. Machado, and V.S. Zapf: J. Appl. Phys., 2011, vol. 110, art. no. 053913.

  56. A. C. Lima, M. A. Morales, J. H. Araujo, J. M. Soares, D. M. A. Melo, A. S. Carrico, Ceram. Inter., 2015, vol. 41(9), pp. 11804-09.

    Article  Google Scholar 

  57. B. D. Cullity and C. D. Graham, Introduction to magnetic materials, Addison-Wesley, Upper Saddle River, 2009, p. 227.

    Google Scholar 

  58. L. Neel, C. R. Acad, Sci. Paris, 1950, vol. 230, p. 375.

    Google Scholar 

  59. Y. Koseoglu, A. Baykal, F. Gozuak, H. Kavas, Polyhedron, 2009, vol. 28(14), pp. 2887-92.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Program of Development in the field of Physics by 2020 under Grant Number KHCBVL.03/18-19. The authors are also thankful to the Ton Duc Thang University and Dongguk University-Gyeongju.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. T. Phong or In-Ja Lee.

Additional information

Manuscript submitted October 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, P.T., Nam, P.H., Phuc, N.X. et al. Effect of Zinc Concentration on the Structural, Optical, and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by Low-Temperature Hydrothermal Method. Metall Mater Trans A 50, 1571–1581 (2019). https://doi.org/10.1007/s11661-018-5096-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5096-z

Navigation