Skip to main content
Log in

The Effect of the Hyperstoichiometric Ti/N Ratio Due to Excessive Ti on the Toughness of N-Controlled Novel Fire- and Seismic-Resistant Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The toughness of the base material (BM) and the coarse-grain heat-affected zone (CGHAZ) of N-controlled fire- and seismic-resistant (FSR) steels (FSR1: 0.03Ti, 0.25Mo, 0.018Nb; FSR2: 0.07Ti, 0.09Mo; and FSR3: 0.14Ti, 0.17Mo) were systematically investigated. FSR1 steel exhibited better toughness than FSR2 and FSR3 steels in the BM and CGHAZ. Fractographic analysis of the BM and CGHAZ revealed the presence of coarse TiN precipitates in fracture initiation sites, which are responsible for the low toughness of FSR2 and FSR3 steels. Coarse TiN precipitates with equivalent diameters of 1 to 6 μm are present in all FSR steels. However, FSR1 steel has relatively lower number density and area fraction of TiN precipitates. The formation mechanism of TiN precipitates is elucidated from the theoretical thermodynamic approach and validated with a quantitative metallographic observation; it was found that the mechanism is the same for both the BM and CGHAZ in all FSR steels. The equilibrium solubility temperature of TiN precipitates in FSR1 steel was lower than the solidus temperature, which resulted in fewer coarse TiN precipitates. The lower boundary of both the Ti/N (hypostoichiometric) ratio and TiN solubility product at the solidus temperature is highly recommended for increased toughness of FSR steels containing Ti, Mo, and Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. W. Sha, F.S. Kelly, and Z.X. Guo: J. Mater. Eng. Perform., 1999, vol. 8, pp. 606–12.

    Article  Google Scholar 

  2. F.S. Kelly and W. Sha: J. Constr. Steel Res., 1999, vol. 50, pp. 223–33.

    Article  Google Scholar 

  3. Y. Mizutani, K. Ishibashi, K. Yoshii, Y. Watanabe, R. Chijhwa, and Y. Yoshida: 590 MPa Class of Fire-Resistant Steel for Building Structural Use, July 2004.

  4. H. Tamehiro, R. Chijiiwa, K. Funato, Y. Yoshida, Y. Horii, and R. Uemori: Development and Practical Applications of Fire-Resistant Steel for Buildings, 1993, vol. 58.

  5. B.K. Panigrahi: Bull. Mater. Sci., 2006, vol. 29, pp. 59–66.

    Article  Google Scholar 

  6. T. Suzuki, Y. Yoshida, Y. Shimura, Y. Suzuki, S. Kubota, and M. Nagata: Development of Building Structural Steel with High Yield Ratio and High Yield Point Leading to Innovative Steel Structural System, 2008.

  7. R. Wan, F. Sun, L. Zhang, and A. Shan: Mater. Des., 2012, vol. 35, pp. 335–41.

    Article  Google Scholar 

  8. Q.L. Young: The Second Phase of the Steel Materials, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  9. R. Wan, F. Sun, L. Zhang, and A. Shan: Mater. Des., 2012, vol. 36, pp. 227–32.

    Article  Google Scholar 

  10. R. Wan, F. Sun, L. Zhang, and A. Shan: J. Mater. Eng. Perform., 2014, vol. 23, pp. 2780–86.

    Article  Google Scholar 

  11. S.-H. Jeong, J.-H. Eom, H.-G. Choi, B.-H. Jeong, S.-H. Hur, and C.-Y. Kang: J. Weld. Join., 2014, vol. 32, pp. 29–34.

    Article  Google Scholar 

  12. J. Moon and C. Lee: J. Kor. Weld. Join. Soc., 2013, vol. 31, pp. 44–49.

    Article  Google Scholar 

  13. Y. Kang, G. Park, S. Jeong, and C. Lee: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 177–86.

    Article  Google Scholar 

  14. J. Moon, C. Lee, S. Uhm, and J. Lee: Acta Mater., 2006, vol. 54, pp. 1053–61.

    Article  Google Scholar 

  15. P. Gong, E.J. Palmiere, and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392–403.

    Article  Google Scholar 

  16. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1211–22.

    Article  Google Scholar 

  17. S.J. Spachinger, W. Ernst, and N. Enzinger: Weld. World, 2017, vol. 61, pp. 1117–31.

    Article  Google Scholar 

  18. D.P. Fairchild, D.G. Howden, and W.A.T. Clark: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 653–67.

    Article  Google Scholar 

  19. L.P. Zhang, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2089–96.

    Article  Google Scholar 

  20. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2147–58.

    Article  Google Scholar 

  21. K. Inoue, I. Ohnuma, H. Ohtani, K. Ishida, and T. Nishizawa: ISIJ Int., 1998, vol. 38, pp. 991–97.

    Article  Google Scholar 

  22. Y. Shen and S.S. Hansen: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2027–35.

    Article  Google Scholar 

  23. J.H. Jang, Y.-U. Heo, C.-H. Lee, H.K.D.H. Bhadeshia, and D.-W. Suh: Mater. Sci. Technol., 2013, vol. 29, pp. 309–13.

    Article  Google Scholar 

  24. S. Kou: Welding Metallurgy, 2nd ed., vol. 822. Wiley, Hoboken, NJ (2003).

    Google Scholar 

  25. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM E23-07a, ASTM, West Conshohocken, PA, 2007, vol. 14.

  26. E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, and M. Thuvander: Mater. Sci. Technol., 2008, vol. 24, pp. 1183–88.

    Article  Google Scholar 

  27. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., IOM Communications Ltd., London, 2001, vol. 21A.

  28. S.G. Lee, D.H. Lee, S.S. Sohn, W.G. Kim, K.K. Um, K.S. Kim, and S. Lee: Mater. Sci. Eng. A, 2017, vol. 697, pp. 55–65.

    Article  Google Scholar 

  29. Standard Test Methods for Determining Average Grain Size, ASTM E112, ASTM, West Conshohocken, PA, 1996.

  30. R.G. Miller: Beyond ANOVA, Basics of Applied Statistics, 1st ed., Wiley-Interscience, Hoboken, NJ, 1997.

    Book  Google Scholar 

  31. S. Dumitrescu and M. Hillert: ISIJ Int., 1999, vol. 39, pp. 84–90.

    Article  Google Scholar 

  32. E.J. Pavlina, J.G. Speer, and C.J. Van Tyne: Scripta Mater., 2012, vol. 66, pp. 243–46.

    Article  Google Scholar 

  33. H. Li, Y.L. Feng, D. Zhang, M. Song, and D.Q. Cang: Rare Met., 2013, vol. 32, pp. 318–22.

    Article  Google Scholar 

  34. E.J. Pavlina, J.G. Speer, and C.J. Van Tyne: Scripta Mater., 2012, vol. 66, pp. 243–46.

    Article  Google Scholar 

  35. Z.X. Zhu, L. Kuzmikova, M. Marimuthu, H.J. Li, and F. Barbaro: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 1–10.

    Article  Google Scholar 

  36. L.P. Zhang, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1147–55.

    Article  Google Scholar 

  37. M.J. Balart, C.L. Davis, and M. Strangwood: Scripta Mater., 2004, vol. 50, pp. 371–75.

    Article  Google Scholar 

  38. H. Somekawa and T. Mukai: Mater. Trans., 2006, vol. 47, pp. 995–98.

    Article  Google Scholar 

  39. O. Yoo, Y.-J. Oh, B.-S. Lee, and S.W. Nam: Mater. Sci. Eng. A, 2005, vol. 405, pp. 147–57.

    Article  Google Scholar 

  40. L. Aucott, S.W. Wen, and H. Dong: Mater. Sci. Eng. A, 2015, vol. 622, pp. 194–203.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work was provided by the Ministry of Trade, Industry and Energy (MOTIE, Korea) under the industry technology innovation program (Grant No. 10063448). The authors are grateful to Professor Hyun-Uk Hong and his graduate student Mr. Jun Yeon Kim, Changwon National University, for providing the opportunity to electropolish TEM samples. A special thanks to the reviewers for their kind efforts in giving valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong-Do Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, D.C., Murugan, S.P., Moon, J. et al. The Effect of the Hyperstoichiometric Ti/N Ratio Due to Excessive Ti on the Toughness of N-Controlled Novel Fire- and Seismic-Resistant Steels. Metall Mater Trans A 50, 3514–3527 (2019). https://doi.org/10.1007/s11661-019-05266-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05266-1

Navigation