Skip to main content
Log in

Liquid Metal Embrittlement Cracking During Resistance Spot Welding of Galvanized Q&P980 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Resistance spot-welded galvanized ultrahigh-strength steels are sensitive to liquid metal embrittlement (LME), which is manifested by surface cracks on the joints. LME occurs when a solid metal contacts a liquid metal under tensile stress, and the phenomenon has not been fully understood until now, especially for resistance spot welding. In this study, the susceptibility of hot-dipped galvanized Q&P980 steel to LME cracking during resistance spot welding was systematically investigated by an orthogonal experiment. Cracks were detected by fluorescent magnetic particle testing and cross-sectional microscopic observation. Cracks were mostly located at the indentation edge and slope, and a few cracks were also located at the indentation center and slope periphery. The severity of the cracking increased with the increasing welding current and welding time, and the decreasing electrode force. The sequence of influence degree from high to low was welding current > electrode force > welding time. Holding time had no obvious effect. Microstructural analysis revealed that the content of martensite in areas with cracking increased, indicating that a high temperature was experienced at these locations. Zinc accumulated inside the cracks, and the cracks were intergranular, which coincides with the characteristics of LME. The LME cracking was provoked by the simultaneous occurrence of a tensile stress, an appropriate temperature and liquid metal, and the cracks were influenced by the welding parameters. Under suitable conditions, Zn diffused along the grain boundaries and weakened them, resulting in LME cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Modaresi, S. Pauliuk, A. N. Løvik and D. B. Müller: Environ. Sci. Technol., 2014, vol. 48, pp. 10776-84.

    Article  CAS  Google Scholar 

  2. R. Kuziak, R. Kawalla and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103-17.

    Article  Google Scholar 

  3. D. Bhattacharya: Materials Science & Technology, 2018, vol. 34, pp. 1809-29.

    Article  CAS  Google Scholar 

  4. M. H. Kamdar: Treatise Mater. Sci. Technol., 1983, vol. 25, pp. 361-459.

    Article  CAS  Google Scholar 

  5. P. J. L. Fernandes and D. R. H. Jones: Eng. Failure Anal., 1996, vol. 3, pp. 299-302.

    Article  CAS  Google Scholar 

  6. C. Beal, X. Kleber, D. Fabregue and M. Bouzekri: Philos. Mag. Lett., 2011, vol. 91, pp. 297-303.

    Article  CAS  Google Scholar 

  7. C. Beal, X. Kleber, D. Fabregue and M. Bouzekri: Scr. Mater., 2012, vol. 66, pp. 1030-33.

    Article  CAS  Google Scholar 

  8. C. Beal, X. Kleber, D. Fabregue and M. Bouzekri: Mater. Sci. Eng. A, 2012, vol. 543, pp. 76-83.

    Article  CAS  Google Scholar 

  9. R. Frappier, P. Paillard, R. L. Gall and T. Dupuy: Adv. Mater. Res., 2014, vol. 922, pp. 161-66.

    Article  CAS  Google Scholar 

  10. C. W. Lee, D. W. Fan, I. R. Sohn, S. J. Lee and B. C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43, pp. 5122-27.

    Article  CAS  Google Scholar 

  11. L. Cho, H. Kang, C. Lee and B. C. De Cooman: Scr. Mater., 2014, vol. 90, pp. 25-28.

    Article  Google Scholar 

  12. C. W. Lee, W. S. Choi, L. Cho, Y. R. Cho and B. C. De Cooman: ISIJ Inter., 2015, vol. 55, pp. 264-71.

    Article  CAS  Google Scholar 

  13. K. Pańcikiewicz, L. Tuz and A. Zielińska-Lipiec: Eng. Failure Anal., 2014, vol. 39, pp. 149-54.

    Article  Google Scholar 

  14. M. H. Razmpoosh, A. Macwan, E. Biro, D. L. Chen, Y. Peng, F. Goodwin and Y. Zhou: Mater. Des., 2018, vol. 155, pp. 375-83.

    Article  CAS  Google Scholar 

  15. E. Tolf, J. HedegaRd and A. Melander: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 25-31.

    Article  CAS  Google Scholar 

  16. Y. G. Kim, I. J. Kim, S. K. Ji, Y. I. Chung and Y. C. Du: Mater. Trans., 2014, vol. 55, pp. 171-75.

    Article  CAS  Google Scholar 

  17. D. Y. Choi, A. Sharma, S. H. Uhm and J. P. Jung: Met. Mater. Int., 2018, vol. 25, pp. 219-28.

    Article  Google Scholar 

  18. R. Ashiri, M. A. Haque, C. W. Ji, M. Shamanian, H. R. Salimijazi and Y. D. Park: Scr. Mater., 2015, vol. 109, pp. 6-10.

    Article  CAS  Google Scholar 

  19. R. Ashiri, M. Shamanian, H. R. Salimijazi, M. A. Haque, J. H. Bae, C. W. Ji, K. G. Chin, Y. D. Park: Scr. Mater., 2016, vol. 114, pp. 41-47.

    Article  CAS  Google Scholar 

  20. R. Ashiri, H. Mostaan and Y. D. Park: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6161-72.

    Article  CAS  Google Scholar 

  21. J. Barthelmie, A. Schram and V. Wesling, Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-Refined TWIP Steels. (IOP Publishing, Bristol, 2016). https://doi.org/10.1088/1757-899x/118/1/012002

    Book  Google Scholar 

  22. J. Frei and M. Rethmeier: Weld. World, 2018, vol. 62, pp. 1031-37.

    Article  CAS  Google Scholar 

  23. L. Wang and J. G. Speer: Metallogr., Microstruct., Anal., 2013, vol. 2, pp. 268-81.

    Article  Google Scholar 

  24. M. Milititsky, E. Pakalnins, C. Jiang, and A. K. Thompson: SAE Technical Paper, 2003, No. 2003-01-0520.

  25. A. Taram, C. Roquelet, P. Meilland, T. Dupuy, C. Kaczynski, J. L. Bodnar and T. Duvaut: Appl. Opt., 2018, vol. 57, pp. D63-D68.

    Article  CAS  Google Scholar 

  26. H. Gaul, S. Brauser, G. Weber and M. Rethmeier: Weld. World, 2011, vol. 55, pp. 99-106.

    Article  CAS  Google Scholar 

  27. P. E. Mix: Introduction to Nondestructive Testing: A Training Guide, 2nd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2005, pp. 247–99.

    Book  Google Scholar 

  28. T. Mori and S.-C. Tsai: Taguchi methods: benefits, impacts, mathematics, statistics, and applications. ASME Press, New York, 2011.

    Book  Google Scholar 

  29. M. Mochizuki, S. Matsushima, M, Toyoda and C. Thaulow (2005) Weld. Int. 19:702-10.

    Article  Google Scholar 

  30. V. Kuklík and J. Kudlacek: Hot-dip galvanizing of steel structures. Butterworth-Heinemann, Oxford, 2016, pp. 29-39.

    Book  Google Scholar 

  31. L. Aucott, D. Huang, H.B. Dong, S.W. Wen, J. Marsden, A. Rack, and A.C.F. Cocks: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1674-82.

    Article  Google Scholar 

  32. P. J. L. Fernandes and D. R. H. Jones: Int. Mater. Rev, 1997, vol. 42, pp. 251-61.

    Article  CAS  Google Scholar 

  33. H. Kang, L. Cho, C. Lee and B. C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2885-905.

    Article  CAS  Google Scholar 

  34. H. Lee, M. C. Jo, S. S. Sohn, S.-H. Kim, T. Song, S.-K. Kim, H. S. Kim, N. J. Kim and S. Lee: Mater. Charact., 2019, vol. 147, pp. 233-41.

    Article  CAS  Google Scholar 

  35. K. D. Bauer, M. Todorova, K. Hingerl and J. Neugebauer: Acta Mater., 2015, vol. 90, pp. 69-76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support from the National Natural Science Foundation of China, No. 51871154 and The National Key Research and Development Program of China, No. 2017YFB0304403.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Kong or Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Z., Chen, T., Kong, L. et al. Liquid Metal Embrittlement Cracking During Resistance Spot Welding of Galvanized Q&P980 Steel. Metall Mater Trans A 50, 5128–5142 (2019). https://doi.org/10.1007/s11661-019-05388-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05388-6

Navigation