Skip to main content
Log in

Effect of Bonding Time on Dissimilar Transient Liquid Phase (TLP) Bonding of IN939 to IN625 Superalloys: Microstructural Characterization and Mechanical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of transient liquid phase (TLP) bonded joints between dissimilar precipitation hardened IN939 and solid solution hardened IN625 with a Ni-Cr-Si-Fe-B filler alloy were studied. The TLP bonding was conducted in different bonding times (i.e., 15, 25, 35, 45, 60, and 90 minutes). Different phases, formed in the isothermally solidified zone (ISZ), on-cooling solidified zone, and diffusion affected zone (DAZ), were characterized using EDS, XRD, and EPMA analyses. A Ni-rich γ solid solution, CrB, and Ni3B were detected in the centerline of samples with incomplete isothermal solidification (i.e., 15 and 25 minutes), formed by binary and ternary eutectic reactions. Raising the time of bonding boosted isothermal solidification, resulting in a joint without deleterious eutectic microconstituents in bonding times of 35 minutes and higher. Chromium-rich borides were discovered in the DAZ of IN939, while the IN625-DAZ side was composed of chromium-molybdenum-rich borides. The concentration of alloying elements in the ISZ experienced an increment by further raising the bonding time to 90 minutes, creating a more homogenous bond with increased ISZ microhardness and mechanical properties. The highest shear strength (~ 92 and ~ 77 Pct that of the IN939 and IN625, respectively) and failure energy were attained for the 90-minutes sample. The fracture mechanism was also switched from a brittle semi-cleave morphology to a more ductile dimple-like morphology by increasing the bonding time from 15- to 90-minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.P. Mouritz, Introduction to aerospace materials, Elsevier, Amsterdam, 2012.

    Book  Google Scholar 

  2. M. Abedini, M.R. Jahangiri, P. Karimi, Oxid. Met., 2018, vol. 90, pp. 469-484.

    Article  CAS  Google Scholar 

  3. M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi, B. Lozanovski, X. Zhang, D. Shidid, L. Farahbod-Sternahl, G. Witt, I. Kelbassa, P. Choong, M. Qian, M. Brandt, Mater. Des., 2018, vol. 157, pp. 179-199.

    Article  CAS  Google Scholar 

  4. M. Jahangiri, S. Boutorabi, H. Arabi, Mater. Sci. Technol., 2012, vol. 28, pp. 1402-1413.

    Article  CAS  Google Scholar 

  5. V. Shankar, K.B.S. Rao, S.L. Mannan, J. Nucl. Mater., 2001, vol. 288, pp. 222-232.

    Article  CAS  Google Scholar 

  6. M. Khakian, S. Nategh, S. Mirdamadi, J. Alloy. Compd., 2015, vol. 653, pp. 386-394.

    Article  CAS  Google Scholar 

  7. B. Binesh, A. Jazayeri-Gharehbagh, J. Mater. Sci. Technol., 2016, vol. 32, pp. 1137-1151.

    Article  CAS  Google Scholar 

  8. N. Wikstrom, A. Egbewande, O. Ojo, J. Alloy. Compd., 2008, vol. 460, pp. 379-385.

    Article  CAS  Google Scholar 

  9. F. Jalilian, M. Jahazi, R. Drew, Mater. Sci. Eng. A, 2006, vol. 423, pp. 269-281.

    Article  Google Scholar 

  10. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, K. Nakashima, Mater. Sci. Eng. A, 2019, vol. 755, pp. 37-49.

    Article  CAS  Google Scholar 

  11. D.S. Duvall, W.A. Owczarski, D.F. Paulonis, Weld. J., 1974, vol. 53, pp. 203-214.

    CAS  Google Scholar 

  12. V. Maleki, H. Omidvar, M.-r. Rahimipour, T. Nonfer. Metal. Soc., 2016, vol.26, pp. 437-447.

    CAS  Google Scholar 

  13. N. Sheng, J. Liu, T. Jin, X. Sun, Z. Hu, J. Mater. Sci. Technol., 2015, vol. 31, pp. 129-134.

    Article  CAS  Google Scholar 

  14. H.M. Hdz-García, A.I. Martinez, R. Muñoz-Arroyo, J.L. Acevedo-Dávila, F. García-Vázquez, F.A. Reyes-Valdes, J. Mater. Sci. Technol., 2014, vol. 30, pp. 259-262.

    Article  Google Scholar 

  15. A. Kazazi, A. Ekrami, J. Manuf. Process., 2019, vol. 42, pp. 131-138.

    Article  Google Scholar 

  16. N. Sheng, B. Li, J. Liu, T. Jin, X. Sun, Z. Hu, J. Mater. Sci. Technol., 2014, vol. 30, pp. 213-216.

    Article  CAS  Google Scholar 

  17. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, K. Nakashima, Mater. Sci. Eng. A, 2020, vol. 772, 138694.

    Article  CAS  Google Scholar 

  18. F. Arhami, S.E. Mirsalehi, A. Sadeghian, M.H. Johar, J. Manuf. Process., 2019, vol. 37, pp. 203-211.

    Article  Google Scholar 

  19. A.Y. Shamsabadi, R. Bakhtiari, J. Alloy. Compd., 2016, vol. 685, pp. 896-904.

    Article  CAS  Google Scholar 

  20. B. Abbasi-Khazaei, A. Jahanbakhsh, R. Bakhtiari, Mater. Sci. Eng. A, 2016, vol. 651, pp. 93-101.

    Article  CAS  Google Scholar 

  21. S. Hadibeyk, B. Beidokhti, S.A. Sajjadi, J. Mater. Process. Tech., 2018, vol. 255, pp. 673-678.

    Article  CAS  Google Scholar 

  22. M. Salmaliyan, M. Shamanian, Heat. Mass. Transfer., 2019, pp. 1–11.

  23. L.X. Zhang, Q. Chang, Z. Sun, Q. Xue, J.C. Feng, J. Manuf. Process., 2019, vol. 38, pp. 167-173.

    Article  Google Scholar 

  24. D. Kokabi, A. Kaflou, R. Gholamipour, M. Pouranvari, J. Alloy. Compd., 2020, vol. 825, 153999.

    Article  CAS  Google Scholar 

  25. S. Ghaderi, F. Karimzadeh, A. Ashrafi, S.H. Hosseini, J. Manuf. Process., 2020, vol. 60, pp. 213-226.

    Article  Google Scholar 

  26. E.D. Moreau, S.F. Corbin, Metall. Mater. Trans. A., 2020, pp. 1–11.

  27. A. Sadeghian, F. Arhami, S.E. Mirsalehi, J. Manuf. Process., 2019, vol. 44, pp. 72-80.

    Article  Google Scholar 

  28. É.M. Miná, Y.C. da Silva, M.F. Motta, H.C. de Miranda, J. Dille, C.C. Silva, Mater. Charact., 2017, vol. 133, pp. 10-16.

    Article  Google Scholar 

  29. O.A. Ojo, O. Aina, Metall. Mater. Trans. A., 2018, vol. 49, pp. 1481-1485.

    Article  Google Scholar 

  30. M. Jahangiri, H. Arabi, S. Boutorabi, Mater. Sci. Tech. Ser., 2012, vol. 28, pp. 1470-1478.

    Article  CAS  Google Scholar 

  31. A. Doroudi, A. Dastgheib, H. Omidvar, J. Manuf. Process., 2020, vol. 53, pp. 213-222.

    Article  Google Scholar 

  32. S. Shakerin, H. Omidvar, S.E. Mirsalehi, Mater. Des., 2016, vol. 89, pp. 611-619.

    Article  CAS  Google Scholar 

  33. A.D. Jamaloei, A. Khorram, A. Jafari, J. Manuf. Process., 2017, vol. 29, pp. 447-457.

    Article  Google Scholar 

  34. M. Pouranvari, A. Ekrami, A. Kokabi, J. Alloy. Compd., 2013, vol. 563, pp. 143-149.

    Article  CAS  Google Scholar 

  35. W. Gale, E. Wallach, Metall. Mater. Trans. A., 1991, vol. 22, pp. 2451-2457.

    Article  Google Scholar 

  36. A. Doroudi, A.E. Pilehrood, M. Mohebinia, A. Dastgheib, A. Rajabi, H. Omidvar, J. Mater. Res. Technol., 2020, vol. 9, pp. 10355-10365.

    Article  CAS  Google Scholar 

  37. A. Ghoneim, O. Ojo, Mater. Charact., 2011, vol. 62, pp. 1-7.

    Article  CAS  Google Scholar 

  38. M. Pouranvari, Mater. Sci. Tech. Ser., 2015, vol. 31, pp. 1773-1780.

    Article  CAS  Google Scholar 

  39. F. Arhami, S.E. Mirsalehi, Metall. Mater. Trans. A., 2018, vol. 49, PP. 6197-6214.

    Article  CAS  Google Scholar 

  40. A. Doroudi, A. Shamsipur, H. Omidvar, M. Vatanara, J. Manuf. Process., 2019, vol. 38, pp. 235-243.

    Article  Google Scholar 

  41. M.-c. Liu, G.-m. Sheng, H.-j. He, Y.-j. Jiao, J. Mater. Process. Tech., 2017, vol. 246, pp. 245-251.

    Article  CAS  Google Scholar 

  42. F. Arhami, S.E. Mirsalehi, A. Sadeghian, J. Mater. Process. Tech., 2019, vol. 265, pp. 219-229.

    Article  CAS  Google Scholar 

  43. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, K. Nakashima, J. Manuf. Process., 2019, vol. 47, pp. 129-140.

    Article  Google Scholar 

  44. W.D. MacDonald, T.W. Eagar, Metal. Sci. Join., 1992, pp. 93–100.

  45. O. Teppa, P. Taskinen, Mater. Sci. Tech. Ser., 1993, vol. 9, pp. 205-212.

    Article  Google Scholar 

  46. A. Ghoneim, O. Ojo, Comp. Mater. Sci., 2011, vol. 50, pp. 1102-1113.

    Article  CAS  Google Scholar 

  47. O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Sci. Technol. Weld. Joi., 2004, vol. 9, pp. 532-540.

    Article  CAS  Google Scholar 

  48. Z. Mišković, M. Jovanović, M. Gligić, B. Lukić, Vacuum., 1992, vol. 43, pp. 709-711.

    Article  Google Scholar 

  49. F. Arhami, S.E. Mirsalehi, J. Mater. Process. Tech., 2019, vol. 266, pp. 351-362.

    Article  CAS  Google Scholar 

  50. J. Wei, Y. Ye, Z. Sun, G. Zou, H. Bai, A. Wu, L. Liu, Metall. Mater. Trans. A., 2017, vol. 48 pp. 4622-4631.

    Article  CAS  Google Scholar 

  51. M. Pouranvari, A. Ekrami, A. Kokabi, J. Alloy. Compd., 2009, vol. 469, pp. 270-275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 19, 2020; accepted January 31, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghian, A., Mirsalehi, S.E., Arhami, F. et al. Effect of Bonding Time on Dissimilar Transient Liquid Phase (TLP) Bonding of IN939 to IN625 Superalloys: Microstructural Characterization and Mechanical Properties. Metall Mater Trans A 52, 1526–1539 (2021). https://doi.org/10.1007/s11661-021-06176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06176-x

Navigation