Skip to main content
Log in

Selective Laser Melting for Joining Dissimilar Materials: Investigations of Interfacial Characteristics and In Situ Alloying

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Joining multi-materials with complex geometries is a promising method to achieve multi-functional components that overcome traditional manufacturing limitations. Selective laser melting (SLM), also known as laser powder bed fusion (LPBF), is an additive manufacturing (AM) technique that enables the production of complex geometries, but it typically operates using a single material and a substrate made of the same material. Here, we show that the SLM technique can be used to join dissimilar printed materials (pure Al, pure Cu, and 50 at. pct Al-50 at. pct Cu mixed powders, respectively) with a typical stainless steel (316L) substrate. We investigate the interfacial characteristics between dissimilar materials processed at various laser energy densities and the feasibility of in situ alloying during the SLM process. Moreover, we employ the finite element method (FEM) to visualize the melting behaviors of Al and Cu powders upon laser irradiation. Pure Al and Cu powders join the stainless steel with distinct characteristics through diffusion and melting. We also produce an Al-Cu alloy with uniformly distributed elements by the SLM processing of Al-Cu mixed powders. Our study demonstrates the feasibility of joining dissimilar materials and in situ alloying in the SLM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Martinsen, S. J. Hu and B. E. Carlson: CIRP Ann., 2015, vol. 64, pp. 679-99.

    Article  Google Scholar 

  2. G. Casalino: Metals, 2017, vol. 7.

  3. A. Bandyopadhyay and B. Heer: Mater. Sci. Eng. R, 2018, vol. 129, pp. 1-16.

    Article  Google Scholar 

  4. R. Seede, D. Shoukr, B. Zhang, A. Whitt, S. Gibbons, P. Flater, A. Elwany, R. Arroyave and I. Karaman: Acta Mater., 2020, vol. 186, pp. 199-214.

    Article  CAS  Google Scholar 

  5. E. W. Jeroen de Beer, Kornelis Blok: Annu. Rev. Energy Env., 1998, vol. 23, pp. 123-205.

    Article  Google Scholar 

  6. R. S. Graves, T. G. Kollie, D. L. McElroy and K. E. Gilchrist: Int. J. Thermophys., 1992, vol. 12, pp. 409-15.

    Article  Google Scholar 

  7. N. R. JesudossHynes, P. Nagaraj and J. A. JennifaSujana: Mater. Manuf. Processes, 2012, vol. 27, pp. 1409-13.

    Article  CAS  Google Scholar 

  8. S. Meco, G. Pardal, S. Ganguly, S. Williams and N. McPherson: Opt. Lasers Eng., 2015, vol. 67, pp. 22-30.

    Article  Google Scholar 

  9. M. Hans, J. C. Támara, S. Mathews, B. Bax, A. Hegetschweiler, R. Kautenburger, M. Solioz and F. Mücklich: Appl. Surf. Sci., 2014, vol. 320, pp. 195-99.

    Article  CAS  Google Scholar 

  10. U. Caligulu, M. Acik, Z. Balalan and N. Kati: Int. J. Steel Struct., 2015, vol. 15, pp. 923-31.

    Article  Google Scholar 

  11. Y. Abe, T. Kato and K. Mori: J. Mater. Process. Technol., 2009, vol. 209, pp. 3914-22.

    Article  CAS  Google Scholar 

  12. X. Chu, H. Che, C. Teng, P. Vo and S. Yue: Surf. Coat. Technol., 2020, vol. 381, 125137.

    Article  CAS  Google Scholar 

  13. X. Cao, M. Jahazi, J. P. Immarigeon and W. Wallace: J. Mater. Process. Technol., 2006, vol. 171, pp. 188-204.

    Article  CAS  Google Scholar 

  14. C. Zhu, T. Liu, F. Qian, W. Chen, S. Chandrasekaran, B. Yao, Y. Song, E. B. Duoss, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley and Y. Li: Nano Today, 2017, vol. 15, pp. 107-20.

    Article  CAS  Google Scholar 

  15. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing: Appl. Phys. Rev., 2015, vol. 2, 40

    Article  Google Scholar 

  16. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater Sci., 2018, vol. 92, pp. 112-224.

    Article  CAS  Google Scholar 

  17. D.-S. Nguyen, H.-S. Park and C.-M. Lee: Appl. Sci., 2019, vol. 9, 3031

    Article  CAS  Google Scholar 

  18. C. Li, Y. B. Guo and J. B. Zhao: J. Mater. Process. Technol., 2017, vol. 243, pp. 269-81.

    Article  CAS  Google Scholar 

  19. S. Hoeges, A. Zwiren and C. Schade: Met. Powder Rep., 2017, vol. 72, pp. 111-17.

    Article  Google Scholar 

  20. S. L. Sing, L. P. Lam, D. Q. Zhang, Z. H. Liu and C. K. Chua: Mater. Charact., 2015, vol. 107, pp. 220-27.

    Article  CAS  Google Scholar 

  21. D. Gu and Y. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107-15.

    Article  CAS  Google Scholar 

  22. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker: Addit. Manuf., 2014, vol. 1, pp. 87-98.

    Google Scholar 

  23. C. Korner, E. Attar and P. Heinl: J. Mater. Process. Technol., 2011, vol. 211, pp. 978-87.

    Article  Google Scholar 

  24. C. Meier, R.W. Penny, Y. Zou, J.S. Gibbs and A.J. Hart: Annu. Rev. Heat Transf., 2017, pp. 1–59.

  25. R. Martinez, I. Todd and K. Mumtaz: Virtual Phys. Prototyping, 2019, vol. 14, pp. 242-52.

    Article  Google Scholar 

  26. H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng: Mater. Sci. Eng. A, 2016, vol. 656, pp. 47-54.

    Article  CAS  Google Scholar 

  27. C. D. Boley, S. A. Khairallah and A. M. Rubenchik: Appl. Opt., 2015, vol. 54, pp. 2477-82.

    Article  CAS  Google Scholar 

  28. H. Wang and Y. Zou, 2019: Int. J. Heat Mass Transfer, vol. 142, pp. 1-12.

    CAS  Google Scholar 

  29. H. Chen, Q. Fang, K. Zhou, Y. Liu and J. Li: Cryst. Eng. Comm., 2020, vol. 22, pp. 4136-46.

    Article  CAS  Google Scholar 

  30. C. Cheng, Y. Liou, A. Lee and M. Tsai, J: Laser Micro, 2019, vol. 14, pp. 138-41.

    CAS  Google Scholar 

  31. D. Shah and A.N. Volkov: Proc. ASME Int. Mech. Eng. Congr. Expo., 2019, pp. 11–14.

  32. X. Wang, M. Shao, H. Jin, H. Tang and H. Liu: J. Mater. Process. Technol., 2019, vol. 269, pp. 190-99.

    Article  CAS  Google Scholar 

  33. W. E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917-28.

    Article  CAS  Google Scholar 

  34. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  CAS  Google Scholar 

  35. A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps and F. De Geuser: Acta Mater., 2019, vol. 167, pp. 89-102.

    Article  CAS  Google Scholar 

  36. S. Kobayashi and T. Yakou: J. Mater. Sci. Eng. A, 2002, vol. 338, pp. 44-53.

    Article  Google Scholar 

  37. G. Zhang, M. Chena, Y. Shi, J. Huang and F. Yang: RSC Adv., 2017, vol. 7, pp. 37797-805.

    Article  CAS  Google Scholar 

  38. S. Basak, H. Das, T. K. Pal and M. Shome: Mater. Charact., 2016, vol. 112, pp. 229-37.

    Article  CAS  Google Scholar 

  39. P. Peyre, G. Sierra, F. Deschaux-Beaume, D. Stuart and G. Fras: Mater. Sci. Eng. A, 2007, vol. 444, pp. 327-38.

    Article  Google Scholar 

  40. S. Chen, X. Yu, J. Huang, J. Yang and S. Lin: J. Alloys Compd., 2019, vol. 773, pp. 719-29.

    Article  CAS  Google Scholar 

  41. S. Chen, J. Huang, J. Xia, H. Zhang and X. Zhao: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3690-96.

    Article  Google Scholar 

  42. R. P. Shi, C. P. Wang, D. Wheeler, X. J. Liu and Y. Wang: Acta Mater., 2013, vol. 61, pp. 1229-43.

    Article  CAS  Google Scholar 

  43. M. Naeem: Laser Tech. J., 2013, vol. 10, pp. 18-20.

    Article  Google Scholar 

  44. A. A. Khan: Int. J. Adv. Manuf. Tech., 2007, vol. 39, pp. 482-87.

    Article  Google Scholar 

  45. B. Liu, B.-Q. Li and Z. Li: Results Phys., 2019, vol. 12, pp. 982-88.

    Article  Google Scholar 

  46. O. Zobac, A. Kroupa, A. Zemanova and K. W. Richter: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3805-15.

    Article  Google Scholar 

  47. J. Zhang, B. Song, Q. Wei, D. Bourell and Y. Shi: J. Mater. Sci. Technol., 2019, vol. 35, pp. 270-84.

    Article  Google Scholar 

  48. M. Bermingham, D. John, J. Krynen, S. Tedman-Jones and M. Dargusch: Acta Mater., 2019, vol. 168, pp. 261-74.

    Article  CAS  Google Scholar 

  49. H. Paul, L. Lityńska-Dobrzyńska and M. Prażmowski: Metal. Mater. Trans. A, 2013, vol. 44, pp. 3836-51.

    Article  Google Scholar 

  50. M. Kandyla, T. Shih and E. Mazur: Phys. Rev. B: Condens. Matter, 2007, vol. 75, 219904

    Article  Google Scholar 

  51. H. Wang, Y. Zhang and K. Chen: J. Manuf. Sci. Eng., 2016, vol. 138, pp. 1110061-69.

    Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support from SJTU-U of T Strategic Partnership Fund, Natural Sciences and Engineering Research Council of Canada (NSERC- RGPIN-2018-05731), and Dean’s Spark Assistant Professorship in the Faculty of Applied Science & Engineering at the University of Toronto. H. S. acknowledges the Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 7, 2020; accepted February 1, 2021.

Appendices

Appendices

1.1 Simulation Models & Parameters

During the additive manufacturing process, metals can be melted and subsequently evaporated via the heat transferred from laser to material powders. Laser energy is mainly absorbed by the upper surface in the melting process and then a hole is formed in the powder because of evaporation. To demonstrate the laser energy absorbed by the powder via the upper surface and keyhole, both surface heat source model and body heat source model are defined in the simulation. The surface heat source is supposed to have a Gaussian distribution and the body heat source model can be defined with the heat generation rate per unit volume. The two heat source models can be described as follows[51]:

$$ q_{{{\text{Surface}}\left( {x,y} \right)}} = \frac{{3{\text{Pe}}_{1} }}{{\pi r_{1}^{2} }}e^{{\left( {\frac{{ - 3\left( {x^{2} + y^{2} } \right)}}{{r_{1}^{2} }}} \right)}} $$
(A1)
$$ q_{{{\text{Body}}\left( {x,y,z} \right)}} = \frac{{3{\text{Pe}}_{2} }}{{\pi \left( {1 - e^{ - 3} } \right)hr_{2}^{2} }}e^{{\left( {\frac{{ - 3\left( {x^{2} + y^{2} } \right)}}{{r_{2}^{2} }}} \right)}} $$
(A2)

where P is the laser power, e1 and e2 represent the ratio of laser energy absorbed by the upper surface and keyhole, r1 and r2 are the radius of the surface heat source and body heat source, and h represents the height of the body heat source.

1.2 Microstructure of the SLM-Processed Al Melt Tracks

See Figure A1.

Fig. A1
figure 8

SEM micrographs of the (a) needle-like microstructure at the Al-stainless steel interface and (b) dendrites observed in the center of the Al melt track. These images are inserted in Fig. 3

1.3 Transformation from the Columnar to Equiaxed Dendrites

See Figure A2.

Fig. A2
figure 9

SEM micrographs of the (a, c) Al-Cu melt tracks produced at different laser energy densities (2.3 and 3.8 J/mm, respectively) and (b, d) microstructural evolution from the columnar to equiaxed dendrites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chu, X., Luo, C. et al. Selective Laser Melting for Joining Dissimilar Materials: Investigations of Interfacial Characteristics and In Situ Alloying. Metall Mater Trans A 52, 1540–1550 (2021). https://doi.org/10.1007/s11661-021-06178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06178-9

Navigation