Skip to main content
Log in

Effect of Prior Deformation Above Md Temperature on Tensile Properties of Type 304 Metastable Austenitic Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, room temperature tensile properties of type 304, a metastable austenitic stainless steel, prior rolled above Md temperature (200 °C and 300 °C) are compared with mill-annealed and material prior rolled at room temperature (25 °C). Strain-induced martensite that formed during the tensile tests, followed using in-situ using magnetic measurements, display kinetics that vary with prior deformation temperature and strain. Scanning Electron Microscopy and Electron Backscattered Diffraction studies provided direct evidence for shear band formation during prior deformation. Kinetics of strain-induced martensite is found to fit the Olson–Cohen equation modified to include the prior deformation strain and martensite formed during prior deformation. The systematic changes observed in the model parameters of the modified Olson–Cohen equation are explained. The strain hardening in the material is analyzed and correlated with changes in the rate of formation of strain-induced martensite with respect to strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Hao, P. Li, Y. Xia, H. Dong, P. Wang, and D. Yan: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 688–703.

    Article  Google Scholar 

  2. C.C. Chen, D.Y. Cho, C.S. Chang, J.T. Chen, W.Y. Lee, and H.C. Lee: J. Clin. Neurosci., 2005, vol. 12, pp. 937–40.

    Article  Google Scholar 

  3. P.L. Andresen, P.H. Chou, M.M. Morra, J. Lawrence Nelson, and R.B. Rebak: in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 40, Springer, Boston, 2009, pp. 2824–36.

  4. A.W. Webb, D.U. Gubser, and L.C. Towle: Rev. Sci. Instrum., 1976, vol. 47, pp. 59–62.

    Article  Google Scholar 

  5. A. Amininejad, R. Jamaati, and S.J. Hosseinipour: Mater. Sci. Eng. A., 2019, vol. 767, p. 138433.

    Article  CAS  Google Scholar 

  6. P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay: Mater. Charact., 2017, vol. 133, pp. 77–86.

    Article  CAS  Google Scholar 

  7. C. Zheng, H. Jiang, X. Hao, J. Ye, L. Li, and D. Li: Mater. Sci. Eng. A., 2019, vol. 746, pp. 332–40.

    Article  CAS  Google Scholar 

  8. D. Xu, X. Wan, J. Yu, G. Xu, and G. Li: Metals., 2018, vol. 8, pp. 1–14.

    Google Scholar 

  9. J. Liu, Y. Jin, X. Fang, C. Chen, Q. Feng, X. Liu, Y. Chen, T. Suo, F. Zhao, T. Huang, H. Wang, X. Wang, Y. Fang, Y. Wei, L. Meng, J. Lu, and W. Yang: Sci. Rep., 2016, vol. 6, pp. 1–15. https://doi.org/10.1038/srep35345.

    Article  CAS  Google Scholar 

  10. X. Chen, L. Ma, C. Zhou, Y. Hong, H. Tao, J. Zheng, and L. Zhang: Corros. Sci., 2019, vol. 148, pp. 159–70.

    Article  CAS  Google Scholar 

  11. T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee: Corros. Sci., 2013, vol. 74, pp. 332–44.

    Article  CAS  Google Scholar 

  12. X.F. Fang and W. Dahl: Mater. Sci. Eng. A., 1991, vol. 141, pp. 189–98.

    Article  Google Scholar 

  13. F. Peng, X. Huai Dong, K. Liu, and H. Yang Xie: J. Iron Steel Res. Int., 2015, vol. 22, pp. 931–6.

    Article  Google Scholar 

  14. E. Polatidis, M. Šmíd, W.-N. Hsu, M. Kubenova, J. Capek, T. Panzner, and H. Van Swygenhoven: Mater. Sci. Eng. A., 2019, vol. 764, p. 138222.

    Article  CAS  Google Scholar 

  15. G.B. Olson and M. Cohen: Metall. Trans. A., 1975, vol. 6A, pp. 791–5.

    Article  CAS  Google Scholar 

  16. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  17. T. Iwamoto, T. Tsuta, and Y. Tomita: Int. J. Mech. Sci., 1998, vol. 40, pp. 173–82.

    Article  Google Scholar 

  18. C. Ravishankar and R.K. Kumar: Mech. Adv. Mater. Struct., 2012, vol. 19, pp. 336–49.

    Article  CAS  Google Scholar 

  19. Z. Qin and Y. Xia: J. Mater. Process. Technol., 2020, vol. 280, p. 116613.

    Article  CAS  Google Scholar 

  20. J.A. Rodríguez-Martínez, R. Pesci, and A. Rusinek: Mater. Sci. Eng. A., 2011, vol. 528, pp. 5974–82.

    Article  Google Scholar 

  21. J. Talonen, H. Hänninen, P. Nenonen, and G. Pape: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 421–32.

    Article  CAS  Google Scholar 

  22. N.H. Moser, T.S. Gross, and Y.P. Korkolis: in Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 45, Springer, Boston, 2014, pp. 4891–96.

  23. T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.

    CAS  Google Scholar 

  24. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A., 2004, vol. 387–389, pp. 158–62.

    Article  Google Scholar 

  25. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 1688–704.

    Article  Google Scholar 

  26. J.M. Diani and D.M. Parks: J. Mech. Phys. Solids., 1998, vol. 46, pp. 1613–35.

    Article  CAS  Google Scholar 

  27. ASTM Standard E8/E8M-13a: ASTM Int., 2013, pp. 1–27.

  28. D. Maréchal, C.W. Sinclair, P. Dufour, P.J. Jacques, and J.D. Mithieux: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 4601–9.

    Article  Google Scholar 

  29. J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506–12.

    Article  CAS  Google Scholar 

  30. M. Bigdeli Karimi, H. Arabi, A. Khosravani, and J. Samei: J. Mater. Process. Technol., 2008, vol. 203, pp. 349–54.

    Article  CAS  Google Scholar 

  31. S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78.

    Article  CAS  Google Scholar 

  32. P.J. Brofman and G.S. Ansell: Metall. Trans. A., 1978, vol. 9, pp. 879–80.

    Article  Google Scholar 

  33. J. Talonen: Helsinki University of Technology, 2007.

  34. G. Sun, L. Du, J. Hu, B. Zhang, and R.D.K. Misra: Mater. Sci. Eng. A., 2019, vol. 746, pp. 341–55.

    Article  CAS  Google Scholar 

  35. H. Barman, A.S. Hamada, T. Sahu, B. Mahato, J. Talonen, S.K. Shee, P. Sahu, D.A. Porter, and L.P. Karjalainen: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1937–52.

    Article  Google Scholar 

  36. K.K. Spencer, M. Véron, Y. Zhang, and J.D. Embury: Mater. Sci. Technol., 2009, vol. 25, pp. 7–17.

    Article  CAS  Google Scholar 

  37. A.J. Bogers and W.G. Burgers: Acta Metall., 1964, vol. 12, pp. 255–61.

    Article  CAS  Google Scholar 

  38. G.B. Olson and M. Cohen: Metall. Trans. A., 1975, vol. 6, pp. 791–5.

    Article  Google Scholar 

  39. V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, and R.D.K. Misra: Scr. Mater., 2014, vol. 86, pp. 60–3.

    Article  CAS  Google Scholar 

  40. H. Mecking and K. Lucke: Zeitschrift für Met., 1969, vol. 60, pp. 185–95.

    CAS  Google Scholar 

  41. H. Mecking: in Proceedings of a Symposium, A.W. Thompson., ed., American Institute of Mining Metallurgical and Petroleum Engineers, Cincinnati, Ohio, 1977, p. 67.

  42. F.R.N. Nabarro, Z.S. Basinski, and D.B. Holt: Adv. Phys., 1964, vol. 13, pp. 193–323.

    Article  CAS  Google Scholar 

  43. C. Teena Mouni, M. S, C. Ravishankar, S.K. Albert, C.R. Das, P.K. Parida, and A. Sagdeo: Mater. Sci. Eng. A, 2021, p. 141960.

  44. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A., 2012, vol. 552, pp. 514–22.

    Article  CAS  Google Scholar 

  45. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (TMC) thanks the Department of Atomic Energy (DAE), India, for granting senior research fellowship. The authors thank Dr. N. Srinivasan, Metal Working Group, DMRL, for extending the rolling facilities. The authors are grateful to the Central Workshop Division, IGCAR, for the fabrication of the specimens; Mrs. Panneer Selvi and Mr. R. Ravi Kumar, IGCAR, for their help in conducting in-situ tensile experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Teena Mouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 26, 2021; October 8, 2021 accepted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouni, C.T., Ravishankar, C., Albert, S.K. et al. Effect of Prior Deformation Above Md Temperature on Tensile Properties of Type 304 Metastable Austenitic Stainless Steel. Metall Mater Trans A 53, 95–106 (2022). https://doi.org/10.1007/s11661-021-06494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06494-0

Navigation