Skip to main content
Log in

Influence of the amount and morphology of retained austenite on the mechanical properties of an austempered ductile iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High Si contents in nodular cast irons lead to a significant volume fraction of retained austenite in the material after the austempering treatment. In the present work, the influence of the amount and morphology of this phase on the mechanical properties (proof stress, ultimate tensile strength (UTS), elongation, and toughness) has been analyzed for different austempering conditions. After 300 °C isothermal treatments at intermediate times, the austenite is plastically stable at room temperature and contributes, together with the bainitic ferrite, to the proof stress and the toughness of the material. For austenite volume fractions higher than 25 pct, the proof stress is controlled by this phase and the toughness depends mainly on the stability of γ. In these conditions (370 °C and 410 °C treatments), the present material exhibits a transformation-induced plasticity (TRIP) effect, which leads to an improvement in ductility. It is shown that the strain level necessary to initiate the martensitic transformation induced by deformation depends on the carbon content of the austenite. The martensite formed under TRIP conditions can be of two different types: “autotempered” plate martensite, which forms at room temperature from an austenite with a quasi-coherent epsilon carbide precipitation, and lath martensite nucleated at twin boundaries and twin intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Forrest: BCIRA Int. Conf., BCIRA, Birmingham, 1978, pp. 24–31.

    Google Scholar 

  2. P.A. Blackmore and R.A. Harding: J. Heat Treating, 1984, vol. 3, pp. 310–25.

    CAS  Google Scholar 

  3. J. Aranzabal, I. Gutiérrez, J.M. Rodriguez-Ibabe, and J.J. Urcola: Mater. Sci. Technol., 1992, vol. 8, pp. 263–73.

    CAS  Google Scholar 

  4. H. Bayati and R. Elliott: Mater. Sci. Technol., 1995, vol. 11, pp. 284–93.

    CAS  Google Scholar 

  5. J. Dodd: Mod. Casting, 1978, May, pp. 60–66.

  6. J. Vuorinen: On the Strain Hardening of Austempered Spheroidal Graphite Cast Iron, Diss. 48F, Technical Research Centre of Finland, Espoo, Finland, 1981.

    Google Scholar 

  7. B.V. Kovacs: J. Heat Treating, 1987, vol. 5, pp. 55–60.

    CAS  Google Scholar 

  8. G. Barbezat and H. Mayer: Sulzer Tech. Rev., 1986, vol. 2, pp. 32–38.

    Google Scholar 

  9. H.K.D.H. Bhadeshia: Bainite in Steels, Institute of Materials, London, 1992.

    Google Scholar 

  10. B.P.J. Sandvik: Metall. Trans. A, 1982, vol. 13A, pp. 789–800.

    Google Scholar 

  11. K.B. Rundman, D.J. Moore, K.L. Hayrynen, W. Dubensky, and T.N. Rouns: J. Heat Treating, 1988, vol. 5, pp. 79–95.

    Google Scholar 

  12. J. Aranzabal, I. Gutiérrez, J.M. Rodríguez-Ibabe, and J.J. Urcola: Anales Mecánica Fractura, 1990, vol. 7, pp. 39–46.

    Google Scholar 

  13. J. Aranzabal, I. Gutiérrez, J.M. Rodriguez-Ibabe, and J.J. Urcola: in Reliability and Structural Integrity of Advanced Materials, ECF9, S. Sedmak, A. Sedmak, and D. Ru’zi’c eds., Engineering Materials Advisory Services, Ltd., Warley, West Midlands, United Kingdom, 1992, vol. 1, pp. 81–86.

    Google Scholar 

  14. J. Aranzabal, I. Gutierrez, and J.J. Urcola: Mater. Sci. Technol., 1994, vol. 10, pp. 728–37.

    CAS  Google Scholar 

  15. I. Gutierrez, J. Aranzabal, F. Castro, and J.J. Urcola: Metall. Trans. A, 1995, vol. 26A, pp. 1045–60.

    CAS  Google Scholar 

  16. T.N. Rouns and K.B. Rundman: Transactions of the American Foundrymen’s Society, Proc. Conf., Des Plaines, IL, American Foundrymen’s Society, Des Plaines, IL, 1987, vol. 95, pp. 851–74.

    Google Scholar 

  17. V.T.T. Miihkinen and D.V. Edmonds: Mater. Sci. Technol., 1987, vol. 3, pp. 432–40.

    CAS  Google Scholar 

  18. B.P.J. Sandvik and H.P. Nevalainen: Met. Technol., 1981, June, pp. 213–20.

  19. J.P. Naylor: Metall. Trans. A, 1979, vol. 10A, pp. 861–73.

    CAS  Google Scholar 

  20. K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa: Iron Steel Inst. Jpn. Int., 1993, vol. 7, pp. 775–82.

    Google Scholar 

  21. C.H. Young and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1994, vol. 10, pp. 209–14.

    CAS  Google Scholar 

  22. A.A.B. Sugden and H.K.D.H. Bhadeshia: Metall. Trans. A, 1988, vol. 19A, pp. 1597–1602.

    CAS  Google Scholar 

  23. H.K.D.H. Bhadeshia and L.E. Svensson: Mathematical Modelling of Weld Phenomena, eds. H. Cerjak and K.E. Easterling, The Institute of Materials, 1993, pp. 109–80.

  24. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978.

    Google Scholar 

  25. Y. Tomita: Mater. Sci. Technol., 1991, vol. 7, pp. 299–306.

    CAS  Google Scholar 

  26. J.H. Hollomon: Trans. AIME, 1945, vol. 162, p. 268.

    Google Scholar 

  27. H. Paruz and D.V. Edmonds: Mater. Sci. Eng., 1989, vol. A117, pp. 67–74.

    CAS  Google Scholar 

  28. W.B. Morrison: Trans. ASM, 1966, vol. 59, pp. 824–26.

    CAS  Google Scholar 

  29. V.F. Zackay, E.R. Parker, D. Farh, and R. Busch: Trans. ASM, 1967, vol. 59, pp. 252–59.

    Google Scholar 

  30. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.

    CAS  Google Scholar 

  31. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  32. A.S. Hamid Ali, K.I. Uzlov, N. Darwish, and R. Elliot: Mater. Sci. Technol., 1994, vol. 10, pp. 35–40.

    Google Scholar 

  33. M. Sarikaya, B.G. Steinberg, and G. Thomas: Metall. Trans. A, 1982, vol. 13A, pp. 2227–37.

    Google Scholar 

  34. V. Martínez, R. Palma, and J.J. Urcola: J. Mater. Sci., 1990, vol. 25, pp. 3359–67.

    Article  Google Scholar 

  35. B.V. Narasimha Rao and G. Thomas: Metall. Trans. A, 1980, vol. 11A, pp. 441–57.

    Google Scholar 

  36. H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411–19.

    Article  CAS  Google Scholar 

  37. Z. Mei and J.W. Morris: Metall. Trans. A, 1990, vol. 21A, pp. 3137–3152.

    CAS  Google Scholar 

  38. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  39. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 337–47.

    Article  Google Scholar 

  40. J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  41. C.F. Shih: Tables of Hutchinson-Rice-Rosengren Singular Field Quantities, MRL E-147, Brown University, Providence, RI, 1983, p. 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ARanzabal, J., Gutierrez, I., Rodriguez-Ibabe, J.M. et al. Influence of the amount and morphology of retained austenite on the mechanical properties of an austempered ductile iron. Metall Mater Trans A 28, 1143–1156 (1997). https://doi.org/10.1007/s11661-997-0280-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0280-6

Keywords

Navigation