Skip to main content
Log in

Analysis of ridging in aluminum auto body sheet metal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A finite-element model is presented for the analysis of surface roughening of aluminum sheet metal. A hybrid finite-element model is developed which accounts for the elasto-viscoplastic constitutive response of a single crystallographic orientation. Initialization of a finite-element mesh representing several grains is performed using data gathered through automated collection of backscattered Kikuchi diffraction data. To handle a region that contains sufficient variation (contains numerous distinct grains), the implementation is carried out using distributed computation strategies. Application is made to 6111-T4 sheet metal intended for auto body applications. The numerical simulations are complemented with mechanical testing in plane strain and biaxial stretch. Based on the simulation results, there are two conclusions that can be drawn concerning the action of surface grains deforming through crystallographic slip. One is that grains can act collectively to form localized regions of thinning. The other is that grain interactions can lead to behavior which is different from that expected if grains deform with the average (macroscale) strain. Neighbor interactions can after the deformation from that computed using the macroscale deformation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984, pp. 130–32.

    Google Scholar 

  2. H.C. Chao: Metall. Trans., 1973, vol. 4, pp. 1183–86.

    CAS  Google Scholar 

  3. R.N. Wright: Metall. Trans. A, 1976, vol. 7A, pp. 1385–88.

    CAS  Google Scholar 

  4. S.P. Keeler and W.A. Backofen: Trans. ASM, 1963, vol. 56, pp. 25–48.

    Google Scholar 

  5. D.V. Wilson: J. Inst. Met., 1966, vol. 94, pp. 84–93.

    CAS  Google Scholar 

  6. D.V. Wilson, W.T. Roberts, and P.M.B. Rodrigues: Metall. Trans. A, 1981, vol. 12A, pp. 1595–1602.

    Google Scholar 

  7. P.S. Bate: Scripta Metall., 1992, vol. 27, pp. 515–20.

    Article  CAS  Google Scholar 

  8. J.S. Kallend, U.F. Kocks, A.D. Rollett, and H.-R. Wenk: Mater. Sci. Eng., 1991, vol. A132, pp. 1–11.

    Google Scholar 

  9. U.F. Kocks, J.S. Kallend, and A.C. Biondo: Proc. 9th Int. Conf. on Textures of Materials, Gordon & Breach, New York, NY, 1991, pp. 199–204.

    Google Scholar 

  10. S.R. Kalidindi and L. Anand: J. Mech. Phys. Solids, 1994, vol. 42, pp. 459–90.

    Article  Google Scholar 

  11. R.E. Smelser and R. Becker: ABACUS User’s Group Conf. Proc., Oxford, United Kingdom, 1991, pp. 457–71.

    Google Scholar 

  12. S. Balasubramanian and L. Anand: Comp. Mech., 1996, vol. 17, pp. 209–25.

    Google Scholar 

  13. A.J. Beaudoin, P.R. Dawson, K.K. Mathur, U.F. Kocks, and D.A. Korzekwa: Comp. Meth. Appl. Mech. Eng., 1994, vol. 117, pp. 49–70.

    Article  Google Scholar 

  14. J.D. Bryant, A.J. Beaudoin, and R.T. VanDyke: SAE Technical Paper 940161, SAE, Warrendale, PA, 1996.

    Google Scholar 

  15. R. Becker: Acta Metall. Mater., 1991, vol. 39, pp. 1211–30.

    Article  Google Scholar 

  16. R. Becker and S. Panchanadeeswaran: Acta Metall. Mater., 1995, vol. 43, pp. 2701–19.

    Article  CAS  Google Scholar 

  17. R. Becker: Acta Metall. Mater., vol. 46, 1998, pp. 1385–401.

    CAS  Google Scholar 

  18. S.I. Wright and B.L. Adams: Metall. Trans. A, 1992, vol. 23A, pp. 759–76.

    CAS  Google Scholar 

  19. B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  20. E. Marin and P.R. Dawson: Comp. Meth. Appl. Mech. Eng., in press.

  21. E. Marin and P.R. Dawson: Comp. Meth. Appl. Mech. Eng., in press.

  22. A.J. Beaudoin, P.R. Dawson, K.K. Mathur, and U.F. Kocks: Int. J. Plast., 1995, vol. 11, pp. 501–21.

    Article  CAS  Google Scholar 

  23. W. Gropp, E. Lusk, and A. Skjellum: Using MPI: Portable Parallel Programming with the Message Passing Interface, MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  24. S. Balay, W. Gropp, L. Curfman McInnes, and B. Smith: PETSc 2.0 Users Manual, Argonne National Laboratory, Argonne, IL, 1995.

    Google Scholar 

  25. T.H.H. Pian: Simulation of Materials Processing: Theory, Methods, and Applications, Proc. NUMIFORM ’95, S.-F. Shen and P.R. Dawson, eds., A.A. Balkema, Rotterdam, 1995, pp. 23–29.

    Google Scholar 

  26. O. Engler, B. Mülders, and Jürgen Hirsch: Z. Metallkd., 1996, vol. 87, pp. 454–64.

    CAS  Google Scholar 

  27. W. Tong, L.G. Hector, H. Weiland, and L.F. Wieserman: Scripta Mater., 1997, vol. 36, pp. 1339–44.

    Article  CAS  Google Scholar 

  28. H. Weiland, L.G. Hector, and W. Tong: Physics and Mechanics of Finite Plastic and Viscoplastic Deformation, Proc. Plasticity ’97, A.S. Khan, ed., Neat Press, Fulton, MD, 1997, pp. 217–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudoin, A.J., Bryant, J.D. & Korzekwa, D.A. Analysis of ridging in aluminum auto body sheet metal. Metall Mater Trans A 29, 2323–2332 (1998). https://doi.org/10.1007/s11661-998-0109-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0109-y

Keywords

Navigation