Skip to main content

Advertisement

Log in

An investigation of the fracture and fatigue crack growth behavior of forged damage-tolerant niobium aluminide intermetallics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The results of a recent study of the effects of ternary alloying with Ti on the fatigue and fracture behavior of a new class of forged damage-tolerant niobium aluminide (Nb3Al-xTi) intermetallics are presented in this article. The alloys studied have the following nominal compositions: Nb-15Al-10Ti (10Ti alloy), Nb-15Al-25Ti (25Ti alloy), and Nb-15Al-40Ti (40Ti alloy). All compositions are quoted in atomic percentages unless stated otherwise. The 10Ti and 25Ti alloys exhibit fracture toughness levels between 10 and 20 MPa√m at room temperature. Fracture in these alloys occurs by brittle cleavage fracture modes. In contrast, a ductile dimpled fracture mode is observed at room-temperature for the alloy containing 40 at. pct Ti. The 40Ti alloy also exhibits exceptional combinations of room-temperature strength (695 to 904 MPa), ductility (4 to 30 pct), fracture toughness (40 to 100 MPa√m), and fatigue crack growth resistance (comparable to Ti-6Al-4V, monolithic Nb, and inconnel 718). The implications of the results are discussed for potential structural applications of the 40Ti alloy in the intermediate-temperature (∼700 °C to 750 °C) regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Hou, J. Shyue, S.S. Yang, and H.L. Fraser: in Alloy Modeling and Design, G.M. Stocks and P.Z.A. Turch, eds., TMS, Warrendale, PA, 1994, pp. 291–98.

    Google Scholar 

  2. J. DiPasquale, D. Gahutu, D. Konitzer, and W.O. Soboyejo: High Temperature Ordered Intermetallic Materials—VI, Materials Research Society Symposia Proceedings, J.A. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, vol. 364, 1995, pp. 1347–52.

    Google Scholar 

  3. T.S. Srivatsan, C. Daniels, S. Sriram, K.P. Dhana Singh, W.O. Soboyejo, and D. Konitzer: Proc. Symp. on Fatigue and Fracture of Ordered Intermetallics II, W.O. Soboyejo, T.S. Srivatsan, and R.O. Ritchie, eds., TMS, Warrendale, PA, 1995, pp. 287–308.

    Google Scholar 

  4. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3007–18.

    CAS  Google Scholar 

  5. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1797–1808.

    Google Scholar 

  6. K.S. Chan: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2518–31.

    CAS  Google Scholar 

  7. J. Shyue, D.-H. Hou, S.C. Johnson, M. Aindow, and H.L. Fraser: Mater. Res. Soc. Proc., 1993, vol. 288, pp. 243–50.

    CAS  Google Scholar 

  8. Binary Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1986.

    Google Scholar 

  9. S. Das, T.J. Jewett, and J.H. Perepezko: Structural Intermetallics: Proc. 1st Int. Symp. on Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993 p. 35.

    Google Scholar 

  10. H.L. Fraser: Research Report, Office of Naval Research, Arlington, VA, 1996.

  11. S. Suresh and J.R. Brockenbrough: Acta Metall. Mater., 1988, vol. 36, pp. 1444–70.

    Article  Google Scholar 

  12. “Metals Tests Methods and Analytical Procedures,” Annual Book of ASTM Standards, ASTM, Philadelphia PA, 1993, Sect. 3.

  13. S. Johnson: Ph.D. Thesis, The Ohio State University, Columbus, OH, 1997.

    Google Scholar 

  14. S. Dubey, A.B.O. Soboyejo, and W.O. Soboyejo: Acta Metall. Mater., 1997, vol. 45, pp. 2777–87.

    CAS  Google Scholar 

  15. C. Mercer and W.O. Soboyejo: in Superalloy 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1997, pp. 577–86.

    Google Scholar 

  16. N. Polvanich and K. Salama: ASTM STP 962, L. Raymond, ed., ASTM, Philadelphia, PA, 1987, pp. 417–27.

    Google Scholar 

  17. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  18. S. Suresh and R.O. Ritchie: in Fatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., AIME, Warrendale, PA, 1984, pp. 227–61.

    Google Scholar 

  19. D. Farkas: unpublished research, Virginia Polytechnic Institute & State University, Blacksburg, VA, 1997.

  20. C. Mercer and W.O. Soboyejo: Acta Metall. Mater., 1997, vol. 45, pp. 961–71.

    CAS  Google Scholar 

  21. W.O. Soboyejo, F. Ye, L.-C. Chen, N. Bahtishi, D.S. Schwartz, and R.J. Lederich: Acta Metall. Mater., 1996, vol. 44, pp. 2027–41.

    CAS  Google Scholar 

  22. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: J. Met., 1997, Aug., pp. 44–67.

  23. J.M. Larsen, B.D. Worth, C.G. Annis, Jr, and F.K. Haake: Int. J. Fract., 1996, vol. 80, pp. 237–55.

    Article  CAS  Google Scholar 

  24. J.M. Larsen, B.D. Worth, S.J. Balsone, A.H. Rosenberger, and J.W. Jones: Fatigue’96, Elsevier Science Ltd., Oxford, United Kingdom, 1996, vol. III, pp. 1719–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, F., MerCer, C. & Soboyejo, W.O. An investigation of the fracture and fatigue crack growth behavior of forged damage-tolerant niobium aluminide intermetallics. Metall Mater Trans A 29, 2361–2374 (1998). https://doi.org/10.1007/s11661-998-0112-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0112-3

Keywords

Navigation