Skip to main content
Log in

Strain-induced grain evolution in polycrystalline copper during warm deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution mechanisms of dislocation microstructures and new grains at high strains of above 4 were studied by means of multiple compression of a polycrystalline copper (99.99 pct). Deformation was carried out by multipass compression with changing of the loading direction in 90 deg in each pass at temperatures of 473 K to 573 K (0.35 to 0.42 T m ) under a strain rate of 10−3 s−1. The flow stresses increase to a peak followed by a work softening accompanied mainly by dynamic recrystallization (DRX) at 523 K to 573 K. In contrast, the steady-state-like flow appears at 473K accompanied with the development of fine grains at strains as high as 4.2. The relationship of flow stress to the new grain size evolved can be expressed by a power law function with a grain size exponent of about −0.35, which is different from −0.75 for high-temperature DRX at above 0.5 T m . At 473 K, misorientations of deformation-induced dislocation subboundaries increase with increasing strain, finally leading to the evolution of new grains. It is concluded that the dynamic grain formation at 473 K cannot result from DRX, but from the evolution of deformation-induced dislocation subboundaries with high misorientations and, concurrently, the operation of dynamic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. McQueen and J.J. Jonas: in Treatise on Materials Science and Technology, R.J. Arsenault, ed., Academic Press, New York, NY, 1975, pp. 393–493.

    Google Scholar 

  2. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  3. A.K. Ghosh and C. Gandhi: in Strength of Metals and Alloys (ICSMA7), H.J. McQueen, J.-P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, United Kingdom, 1985, pp. 2065–72.

    Google Scholar 

  4. S.J. Hales, T.R. McNelley, and H.J. McQueen: Metall. Trans. A, 1991, vol. 22A, pp. 1037–47.

    CAS  Google Scholar 

  5. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1996, pp. 363–92.

    Google Scholar 

  6. N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, and V.A. Sazonova: Phys. Met. Metallogr., 1986, vol. 61, pp. 127–34.

    Google Scholar 

  7. V.Y. Gertsman, R. Birringer, R.Z. Valiev, and H. Gleiter: Scripta Metall. Mater., 1994, vol. 30, pp. 229–34.

    Article  CAS  Google Scholar 

  8. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 4619–29.

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, Yu. V. Ivanisenko, E.F. Rauch, and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705–12.

    Article  CAS  Google Scholar 

  10. G.A. Salishchev, R.G. Zaripova, A.A. Zakirova, and H.J. McQueen: in Hot Workability of Steels and Light Alloys-Composites, H.J. McQueen, E.V. Konopleva, and N.D. Ryan, eds., TMS-CIM, Montreal, 1996, pp. 217–26.

    Google Scholar 

  11. A. Belyakov, R. Kaibyshev, and T. Sakai: Metall. Trans. A, 1998, vol. 29A, pp. 161–67.

    CAS  Google Scholar 

  12. N. Hansen: Metall. Trans. A, 1985, vol. 16A, pp. 2167–90.

    CAS  Google Scholar 

  13. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  14. D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.

    Article  CAS  Google Scholar 

  15. V.V. Rybin: Large Plastic Deformation and Destructure of Metals, Metallurgy, Moscow, 1986, pp. 61–89.

    Google Scholar 

  16. R. Kaibyshev and O. Sitdikov: Z. Metallkd., 1994, vol. 85, pp. 738–43.

    CAS  Google Scholar 

  17. A. Belyakov, H. Miura, and T. Sakai: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 595–601.

    CAS  Google Scholar 

  18. G. Tomas and M.J. Goringe: Transmission Electron Microscopy of Materials, Wiley, New York, NY, 1979, pp. 112–24.

    Google Scholar 

  19. T. Sakai: J. Mater. Processing Technol., 1995, vol. 53, pp. 349–61.

    Article  Google Scholar 

  20. T. Sakai and H. Miura: in Hot Workability of Steels and Light Alloys-Composites, H.J. McQueen, E.V. Konopleva, and N.D. Ryan, eds., TMS-CIM, Montreal, 1996, pp. 161–72.

    Google Scholar 

  21. J.E. Bailey and P.B. Hirsh: Proc. R. Soc. London, 1962, vol. A267, pp. 11–30.

    Google Scholar 

  22. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 1–5.

    Google Scholar 

  23. K. Tsuzaki, Huang Xiaoxu, and T. Maki: Acta Mater., 1996, vol. 44, pp. 4491–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, A., Gao, W., Miura, H. et al. Strain-induced grain evolution in polycrystalline copper during warm deformation. Metall Mater Trans A 29, 2957–2965 (1998). https://doi.org/10.1007/s11661-998-0203-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0203-1

Keywords

Navigation