Skip to main content
Log in

Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fracture toughness of Al-Zn-Mg-Cu-based 7XXX aluminum alloys decreases with an increase in the extent of recrystallization. In this contribution, the fracture path of plane-strain fracture-toughness specimens of 7050 alloy (a typical alloy of the 7XXX series) is quantitatively characterized as a function of degree of recrystallization, specimen orientation, and aging condition. The fracture path is quantitatively correlated to fracture toughness, and the bulk microstructural attributes estimated via stereological analysis. In the companion article, these quantitative data are used to develop and verify a multiple-fracture micromechanism-based model that relates the fracture toughness to a number of microstructural parameters of the partially recrystallized alloy plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Staley: ASTM Standard Technical Publication No. 605, ASTM, Philadelphia, PA, 1976, pp. 71–103.

    Google Scholar 

  2. T. Kawabata and O. Izumi: Acta Metall., 1977, vol. 25, pp. 505–12.

    Article  CAS  Google Scholar 

  3. T. Ohira and T. Kishi: Mater. Sci. Eng., 1986, vol. 78, pp. 9–19.

    Article  CAS  Google Scholar 

  4. I. Kirman: Metall. Trans., 1977, vol. 2, pp. 1761–70.

    Google Scholar 

  5. G.M. Ludtka and D.E. Laughlin: Metall. Trans. A, 1982, vol. 13A, pp. 411–25.

    CAS  Google Scholar 

  6. J.W. Yeh and Kuo-Shung Liu: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 504–11.

    CAS  Google Scholar 

  7. E. Hornbogen and E.A. Starke, Jr.: Acta Metall., 1993, vol. 41, pp. 1–16.

    Article  CAS  Google Scholar 

  8. E. Hornbogen and M. Garf: Acta Metall., 1977, vol. 25, pp. 877–81.

    Article  CAS  Google Scholar 

  9. H.J. Roven: Scripta Metall., 1992, vol. 26, pp. 1383–88.

    Article  CAS  Google Scholar 

  10. T. Kawabata and O. Izumi: Acta Metall., 1976, vol. 24, pp. 817–25.

    Article  CAS  Google Scholar 

  11. A.M. Gokhale and N.U. Deshpande: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1203–10.

    CAS  Google Scholar 

  12. J.T. Staley, H.Y. Hunsicker, and R.H. Brown: U.S. Patent No. 3,881,966, 1975.

  13. K.S. Rangathan: Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1991.

    Google Scholar 

  14. J.C. Ehrstrom, R. Sahani, A. Reeves, and P. Sainfort: Proc. 4th Int. Conf. Aluminum Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds. Georgia Institute of Technology, Atlanta, GA, 1994, pp. 11–16.

    Google Scholar 

  15. M. Conserva and P. Fiorini: Metall. Trans., 1973, vol. 4, pp. 857–62.

    CAS  Google Scholar 

  16. J.T. Staley: Mater. Sci. Technol., 1987, vol. 3, pp. 923–34.

    CAS  Google Scholar 

  17. A.K. Vasudevan and R.D. Doherty: Acta Metall., 1987, vol. 35, pp. 1193–19.

    Article  CAS  Google Scholar 

  18. E.A. Starke, Jr.: J. Met., 1970, pp. 54–63.

  19. T.H. Sanders, Jr. and E.A. Starke, Jr.: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.

    CAS  Google Scholar 

  20. H. Cai, J.T. Evans, and D. Boomer: Mater. Sci. Eng., 1992, vol. 42, pp. 589–600.

    Google Scholar 

  21. J.T. Staley: Proc. 3rd Int. Conf. on Aluminum Alloys, L. Arlberg, O. Lohne, E. Nes, and N. Ryum, eds., 1992, pp. 107–43.

  22. F.S. Lin and E.A. Starke, Jr.: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.

    Article  CAS  Google Scholar 

  23. N.U. Deshpande: Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 1996.

    Google Scholar 

  24. E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  25. A.J. Baddley, H.J.G. Gundersen, and L.M. Cruz Orive: J. Microsc., 1986, vol. 142, pp. 259–76.

    Google Scholar 

  26. A.M. Gokhale and W.J. Drury: Metall. Mater. Trans. A, 1994, vol. 25, pp. 919–28.

    Google Scholar 

  27. A.M. Gokhale and N.U. Deshpande: in Quantitative Microscopy and Image Analysis, D.D. Diaz, ed., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 73–82.

    Google Scholar 

  28. A.M. Gokhale, C.V. Iswaran, and R.T. DeHoff: Metall. Trans. A, 1979, vol. 10A, pp. 1239–45.

    Google Scholar 

  29. T.L. Andersen: Fundamentals and Applications of Fracture Mechanics, CRC Press, London, 1991.

    Google Scholar 

  30. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 163.

    Google Scholar 

  31. M. Ninomi and T. Kobayashi: Proc. MRS Int. Meeting on Advanced Materials, 1989, vol. 5, pp. 379–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, N.U., Gokhale, A.M., Denzer, D.K. et al. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization. Metall Mater Trans A 29, 1191–1201 (1998). https://doi.org/10.1007/s11661-998-0246-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0246-3

Keywords

Navigation