Skip to main content
Log in

Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part II. Mechanical behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In Part II of this article, the high-strength Al-Si/TiC composite and the elevated-temperature-resistant Al-Fe(-V-Si)/TiC composite, developed on the basis of the in situ Al-TiC composites (Part I of the article),[8] have been evaluated for their room- and elevated-temperature mechanical behavior. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum-based composites. The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit high Young’s moduli and substantial improvements in room- and elevated-temperature tensile properties compared to those of rapidly solidified alloys and conventional composites. The Young’s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman (H-S) limits, in keeping with the strong interfacial bonding. In the micro-mechanics approach, the principal strengthening mechanisms for the present dispersed, particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. You, M. Dollor, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1991, vol. 22A, pp. 2445–50.

    CAS  Google Scholar 

  2. C.C. Perng, J.R. Hwang, and J.L. Doong: Compos. Sci. Technol., 1993, vol. 49, pp. 225–36.

    Article  CAS  Google Scholar 

  3. A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, and Y.R. Mahajan: Scripta Metall., 1990, vol. 24, pp. 873–78.

    Article  CAS  Google Scholar 

  4. W. Kai, J.M. Yang, and W.C. Harrigan, Jr.: Scripta Metall. Mater., 1989, vol. 23, pp. 1277–80.

    CAS  Google Scholar 

  5. P.K. Rohatgi: Key Eng. Mater., 1995, vols. 104–107, pp. 293–312.

    Google Scholar 

  6. P.C. Maity and S.C. Panigrahi: Key Eng. Mater., 1995, vols. 104–107, pp. 313–28.

    Google Scholar 

  7. A. Chrysanthou: Key Eng. Mater., 1995, vols. 104–107, pp. 381–86.

    Google Scholar 

  8. X.C. Tong and H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 875–91.

    CAS  Google Scholar 

  9. Z. Wang and R.J. Zhang: Metall. Trans. A, 1991, vol. 22A, pp. 1585–93.

    CAS  Google Scholar 

  10. F.J. Humphreys, A. Basu, and M.R. Djazeb: in Metal Matrix Composites, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pederson, O.B. Pederson, B. Ralph, eds., RISØ National Laboratory, Roskilde, Denmark, 1991, pp. 51–66.

    Google Scholar 

  11. R. Mitra, M.E. Fine, and J.R. Weertman: J. Mater. Res., 1993, vol. 8, pp. 2370–79.

    CAS  Google Scholar 

  12. V.V. Bhanuprasad, M.A. Staley, P. Ramakrishnan, and Y.R. Mahajaw: Key Eng. Mater., 1995, vols. 104–107, pp. 495–506.

    Google Scholar 

  13. D.J. Lloyds: Int. Mater. Rev. 1994, vol. 39, pp. 1–23.

    Google Scholar 

  14. M. Gupta, J. Juarez-Islas, W.E. Frazier, F.A. Mohamed, and E.J. Lavernia: Metall. Trans. B, 1992, vol. 23B, pp. 719–36.

    CAS  Google Scholar 

  15. S.K. Das, P.S. Gilman, and D. Raybould: Key Eng. Mater., 1989, vols. 38-39, pp. 367–92.

    Article  Google Scholar 

  16. R. Mitra, M.E. Fine, and J.R. Weertman: J. Mater. Res., 1993, vol. 8, pp. 2380–92.

    CAS  Google Scholar 

  17. T. Christman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, pp. 3029–50.

    Article  CAS  Google Scholar 

  18. H.G.F. Wilsdorf: in Dispersion Strengthened Al Alloys, Y.W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 3–29.

    Google Scholar 

  19. D.J. Bacon, U.F. Kocks, and R.O. Scattergood: Phil. Mag., 1972, vol. 28, pp. 1241–63.

    Google Scholar 

  20. A. Barbacki and W. Frackowiak: Z. Metallkd., 1988, vol. 79, pp. 410–12.

    CAS  Google Scholar 

  21. L.C. Davis and J.E. Allison: Metall. Trans. A, 1993, vol. 24A, pp. 2487–96.

    CAS  Google Scholar 

  22. M.K. Premkumar, A. Lawley, and M.J. Koczak: Mater. Sci. Eng., 1994, vol. 174, pp. 127–39.

    Article  Google Scholar 

  23. R.J. McElroy and Z.C. Szkopiak: Int. Met. Rev., 1972, vol. 17, pp. 175–202.

    CAS  Google Scholar 

  24. John D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, Inc., New York, NY, 1975, p. 518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X.C., Fang, H.S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part II. Mechanical behavior. Metall Mater Trans A 29, 893–902 (1998). https://doi.org/10.1007/s11661-998-0279-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0279-7

Keywords

Navigation