Skip to main content
Log in

An analytical electron microscopy study of paraequilibrium cementite precipitation in ultra-high-strength steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To support quantitative design of ultra-high-strength (UHS) secondary-hardening steels, the precipitation of cementite prior to the precipitation of the M2C phase is investigated using a model alloy. The microstructure of cementite is investigated by transmission electron microscopy (TEM) techniques. Consistent with earlier studies on tempering of Fe-C martensite, lattice imaging of cementite suggests microsyntactic intergrowth of M5C2 (Hägg carbide). The concentration of substitutional alloying elements in cementite are quantified by high-resolution analytical electron microscopy (AEM) using extraction replica specimens. Quantification of the substitutional elements in cementite confirms its paraequilibrium (PE) state with ferrite at the very early stage of tempering. The implications of these results are discussed in terms of the thermodynamic driving force for nucleation of the primary-strengthening, coherent M2C carbide phase. The ferrite-cementite PE condition reduces the carbon concentration in the ferrite matrix with a significant reduction of M2C driving force. The kinetics of dissolution of PE cementite and its transition to other intermediate states will also influence the kinetics of secondary hardening behavior in UHS steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Olson: Science, 1997, vol. 277, pp. 1237–42.

    Article  CAS  Google Scholar 

  2. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3361–70.

    Article  CAS  Google Scholar 

  3. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3371–79.

    Article  CAS  Google Scholar 

  4. C.J. Kuehmann: Ph.D. Thesis, Northwestern University, Evanston, IL, 1994.

    Google Scholar 

  5. P.M. Machmeier, C.D. Little, M.H. Horowitz, and R.P. Oates: Met. Technol., 1979, vol. 6, pp. 291–96.

    CAS  Google Scholar 

  6. J. Montgomery: Ph.D. Thesis, Northwestern University, Evanston, IL, 1990.

    Google Scholar 

  7. G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303–15.

    CAS  Google Scholar 

  8. A.J. Allen, D. Gavillet, and J.R. Weertman: Acta Metall. Mater., 1992, vol. 41, pp. 1869–84.

    Google Scholar 

  9. J.S. Montgomery and G.B. Olson: Proc. 34th Army Sagamore Conf. on Innovations in Ultrahigh-Strength Steel in Technology, Lake George, NY, 1987, M. Azrin. G.B. Olson, and E.S. Wright, eds., U.S. Government Printing Office, Washington, DC, 1990, pp. 147–78.

    Google Scholar 

  10. P. Jemain and J.R. Weertman: Northwestern University, Evanston, IL, unpublished research, 1992.

  11. G. Haidemenopoulos, G.B. Olson, and M. Cohen: in Proc. 34th Army Sagamore Conf. on Innovations in Ultrahigh-Strength Steel in Technology, Lake George, NY, 1987, M. Azrin, G.B. Olson, and E.S. Wright, eds., U.S. Government Printing Office, Washington, DC, 1990, pp. 549–93.

    Google Scholar 

  12. H.E. Lippard: Ph.D. Thesis, Northwestern University, Evanston, IL, 1997.

    Google Scholar 

  13. A. Hultgren: Jernkontorets Ann., 1951, vol. 135, p. 403.

    Google Scholar 

  14. M. Hillert: Internal Report, Swedish Institute for Metals Research, Stockholm, 1953.

    Google Scholar 

  15. J.S. Kirkaldy: Can J. Phys., 1958, vol. 36, pp. 899–925.

    CAS  Google Scholar 

  16. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans. AIME, 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  17. D.E. Coates: Metall. Trans., 1972, vol. 3, pp. 1203–12.

    CAS  Google Scholar 

  18. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077–86.

    CAS  Google Scholar 

  19. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 2313–25.

    CAS  Google Scholar 

  20. H.K.D.H. Bhadeshia: Progr. Mater. Sci., 1985, vol. 29, pp. 321–86.

    Article  CAS  Google Scholar 

  21. M. Hillert and L.-I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  22. S.S. Babu, K. Hono, and T. Sakurai: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 499–508.

    CAS  Google Scholar 

  23. C. Wert: Phys. Rev., 1950, vol. 79, pp. 601–05.

    Article  CAS  Google Scholar 

  24. A.W. Bowen and G.M. Leak: Metall. Trans., 1970, vol. 1, pp. 1695–1700.

    CAS  Google Scholar 

  25. A.T. Davenport and R.W.K. Honeycombe: Met. Sci., 1975, vol. 9, pp. 201–08.

    Article  CAS  Google Scholar 

  26. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth-Heinemann Ltd., Oxford, United Kingdom, 1992, p. 13.20.

    Google Scholar 

  27. J.I. Goldstein, D.B. Williams, and G. Cliff: in Principles of Analytical Electron Microscopy, D.C. Joy, A.D. Romig, Jr., and J.I. Goldstein, eds., Plenum Press, New York, NY, 1986, pp. 155–217.

    Google Scholar 

  28. DTSA: Desk Top Spectrum Analyzer and X-ray Database, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 1995.

    Google Scholar 

  29. G. Cliff and G.W. Lorimer: J. Microsc., 1975, vol. 103, pp. 203–07.

    Google Scholar 

  30. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and Eric Lifshin: in Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, NY, 1984.

    Google Scholar 

  31. C. Nockolds, M.J. Nasir, G. Cliff, and G.W. Lorimer: Proc. Inst. of Physics, Electron Microscopy and Analysis Group, T. Mulvey, ed., Conf. Ser. No. 52, The Institute of Physics, London, 1979, pp. 417–20.

    Google Scholar 

  32. S.J.B. Reed: Electron Microprobe Analysis, Cambridge University Press, Cambridge, United Kingdom, 1975.

    Google Scholar 

  33. S.M. Allen: Phil. Mag. A, 1981, vol. 43, pp. 325–35.

    CAS  Google Scholar 

  34. D.B. Williams: Practical Analytical Electron Microscopy in Materials Science, Philips Electronic Instruments, Inc., Electron Optics Publishing Group, Mahwah, NJ, 1987.

    Google Scholar 

  35. B. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  36. “Thermo-Calc, version K,” Division of Computational Thermodynamics, Royal Institute of Technology, Stockholm, 1995.

  37. B. Jansson: “Evaluation of Parameters in Thermochemical Models Using Different Types of Experimental Data Simultaneously,” TRITA-MAC-0234, Royal Institute of Technology, Stockholm, 1984.

    Google Scholar 

  38. Scientific Group Thermodata Europe, solution database, 1994.

  39. G. Hägg: Z. Kristallogr., 1934, vol. 89, pp. 92–94.

    Google Scholar 

  40. J. Sênateur and R. Fruchart: C.R. Acad. Sci., Paris, 1963, vol. 256, pp. 3114–17.

    Google Scholar 

  41. M.J. Duggin, D. Cox, and L. Zwell: Trans. AIME, 1966, vol. 236, pp. 1342–46.

    CAS  Google Scholar 

  42. J. Crangle and W. Sucksmith: J. Iron Steel Inst., 1951, vol. 168, pp. 141–51.

    CAS  Google Scholar 

  43. H. Ino, K. Moriya, and E.F. Fujita: Tetsu-to-Hagané, 1968, vol. 54, pp. 34–47.

    CAS  Google Scholar 

  44. K.H. Jack: J. Iron Steel Inst., 1951, vol. 169, pp. 26–36.

    CAS  Google Scholar 

  45. Y. Ohmori and S. Sugisawa: Trans. JIM, 1971, vol. 12, pp. 170–78.

    CAS  Google Scholar 

  46. Y. Ohmori: Trans. JIM, 1972, vol. 13, pp. 119–27.

    CAS  Google Scholar 

  47. Y. Imai, T. Kokura, and A. Inoue: Tetsu-to-Hagané, 1972, vol. 58, pp. 726–40.

    CAS  Google Scholar 

  48. A. Koreeda and K. Shimizu: Proc. 5th Int. Conf. High Voltage Electron Microscopy, Kyoto, Japan, 1977, Japan Electron Microscopic Society, Bunkyo-ku, Japan, 1977, pp. 611–14.

    Google Scholar 

  49. S. Nagakura, T. Suzuki, and M. Kusunoki: Trans. JIM, 1981, vol. 22, pp. 699–709.

    CAS  Google Scholar 

  50. S. Nagakura, Y. Horotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura: Metall. Trans. A, 1983, vol. 14A, pp. 1025–31.

    Google Scholar 

  51. D. Meinhardt and O. Krisement: Arch. Eisenhüttenwes., 1962, vol. 33, pp. 493–99.

    CAS  Google Scholar 

  52. A.I. Gardin: Sov. Phys.-Crystallogr., 1962, vol. 7, pp. 694–700.

    Google Scholar 

  53. F.H. Herbstein and J. Smuts: Acta Crystallogr., 1964, vol. 17, pp. 1331–32.

    Article  CAS  Google Scholar 

  54. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2749–65.

    CAS  Google Scholar 

  55. J. Mandel: The Statistical Analysis of Experimental Data, Dover Publications, Inc., New York, NY, 1964.

    Google Scholar 

  56. B. Sundman and J. Ågren: J. Phys. Chem. Solids, 1981, vol. 42, pp. 297–301.

    Article  CAS  Google Scholar 

  57. M. Hillert and M. Jarl: CALPHAD, 1978, vol. 2, pp. 227–38.

    Article  CAS  Google Scholar 

  58. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455–64.

    CAS  Google Scholar 

  59. M. Hillert: in The Mechanism of Phase Transformations in Crystalline Solids, The Institute of Metals, London, 1969, pp. 231–47.

    Google Scholar 

  60. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  CAS  Google Scholar 

  61. Z.-K. Liu, L. Höglund, B. Jönsson, and J. Ågren: Metall. Trans. A, 1991, vol. 22A, pp. 1745–52.

    CAS  Google Scholar 

  62. Z.-K. Liu and J. Ågren: Metall. Trans. A, 1991, vol. 22A, pp. 1753–59.

    CAS  Google Scholar 

  63. R.-H. Liarng: Ph.D. Thesis, Northwestern University, Evanston, IL, 1996.

    Google Scholar 

  64. C. Knepfler: Ph.D. Thesis, Northwestern University, Evanston, IL, 1994.

    Google Scholar 

  65. C.E. Campbell: Ph.D. Thesis, Northwestern University, Evanston, IL, 1997.

    Google Scholar 

  66. J.S. Langer and A.J. Schwartz: Phys. Rev. A, 1980, vol. 21, pp. 948–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, G., Olson, G.B. & Campbell, C.E. An analytical electron microscopy study of paraequilibrium cementite precipitation in ultra-high-strength steel. Metall Mater Trans A 30, 501–512 (1999). https://doi.org/10.1007/s11661-999-0042-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0042-8

Keywords

Navigation