Skip to main content
Log in

Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of −1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than ∼ 25 to 28 µm, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than ∼ 25 to 28 µm, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Spear and G.R. Gardner: AFS Trans., 1960, vol. 68, pp. 36–44.

    Google Scholar 

  2. K. Radhakrishna, S. Seshan, and M.R. Seshadri: AFS Trans., 1980, vol. 88, pp. 695–702.

    CAS  Google Scholar 

  3. K.J. Oswalt and M.S. Misra: AFS Int. Cast Met. J., 1981, vol. 6, pp. 23–40.

    CAS  Google Scholar 

  4. J. Eady and D.M. Smith: Mater. Forum, 1986, vol. 9, pp. 217–23.

    CAS  Google Scholar 

  5. M.K. Surappa, E. Blank, and J.C. Jaquet: Scripta Metall., 1986, vol. 20, pp. 1281–86.

    Article  CAS  Google Scholar 

  6. B. Closset and J.E. Gruzleski: Metall. Trans. A, 1982, vol. 13A, pp. 945–51.

    CAS  Google Scholar 

  7. G. Gustafsson, T. Thorvaldsson, and G.L. Dunlop: Metall. Trans. A, 1986, vol. 17A, pp. 45–52.

    CAS  Google Scholar 

  8. C.H. Caceres and J.R. Griffiths: Acta Mater., 1996, vol. 44, pp. 25–33.

    Article  CAS  Google Scholar 

  9. Q.G. Wang and C.H. Caceres: Mater. Sci. Eng. A, 1998, vol. 241A, pp. 72–82.

    Google Scholar 

  10. D.L. Zhang and L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983–91.

    Article  CAS  Google Scholar 

  11. C.H. Caceres and Q.G. Wang: AFS Trans., 1996, vol. 104, pp. 1039–43.

    CAS  Google Scholar 

  12. W.A. Bailey: Foundry, 1965 (October), vol. 93 pp. 96–101.

    Google Scholar 

  13. J. Nath: SAE Technical Papers Series (SP-1097), No. 950723, SAE International, Warrendale, PA, 1995, pp. 75–90.

    Google Scholar 

  14. D. St John, C. Caceres, D. Zhang, and G. Edwards: Mater. Aust., 1996 (April), vol. 28, pp. 14–16.

    Google Scholar 

  15. C.Y. Kung and M.E. Fine: Metall. Trans. A, 1979, vol. 10A, pp. 603–10.

    CAS  Google Scholar 

  16. M.J. Couper, A.E. Neeson, and J.R. Griffiths: Fat. Fract. Eng. Mater. Struct., 1990, vol. 13, pp. 213–27.

    Article  Google Scholar 

  17. J.C. Ting and F.V. Lawrence, Jr.: Fat. Fract. Eng. Mater. Struct., 1993, vol. 16, pp. 631–49.

    Article  CAS  Google Scholar 

  18. S. Gungor and L. Edwards: Fat. Fract. Eng. Mater. Struct., 1993, vol. 16, pp. 391–403.

    Article  CAS  Google Scholar 

  19. C.M. Sonsino and J. Ziese: Int. J. Fat., 1993, vol. 15, pp. 75–83.

    Article  CAS  Google Scholar 

  20. J.H. Elsner, E.P. Kvam, and A.F. Grandt, Jr.: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1157–67.

    CAS  Google Scholar 

  21. P.C. Inguanti: Proc. 17th Nat. SAMPE Technical Conf., Kiamesha Lake, NY, Oct. 22–24, 1985, pp. 61–73.

  22. J.M. Boileau, J.W. Zindel, and J.E. Allison: SAE Technical Papers Series (SP-1251), No. 970019, SAE International, Warrendale, PA, 1997, pp. 61–72.

    Google Scholar 

  23. W. Chen, B. Zhang, T. Wu, D.R. Poirier, P. Sung, and Q.T. Fang: in Automotive Alloys II, S.K. Das, ed., TMS, Warrendale, PA, 1998, pp. 99–113.

    Google Scholar 

  24. K. Shiozawa, Y. Tohda, and S.-M. Sun: Fat. Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 237–47.

    Article  CAS  Google Scholar 

  25. W. Chen, B. Zhang, and D.R. Poirier: The University of Arizona, Tucson, AZ unpublished research, 1998.

  26. Q.T. Fang and D.A. Granger: in Light Metals 1989, P.G. Campbell, ed., TMS, Warrendale, PA, 1989, pp. 927–35.

    Google Scholar 

  27. Q.T. Fang and D.A. Granger: AFS Trans., 1989, vol. 97, pp. 989–1000.

    Google Scholar 

  28. “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-82, Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1982, vol. 03.01, pp. 465–69.

  29. K. Tynelius, J.F. Major, and D. Apelian: AFS Trans., 1993, vol. 101, pp. 401–13.

    CAS  Google Scholar 

  30. S. Shivkumar, L. Wang, and R. Lavigne: Light Metals 1993, S.K. Das, ed., TMS, Warrendale, PA, 1993, pp. 829–38.

    Google Scholar 

  31. H. Yokoyama, O. Umezawa, K. Nagai, and T. Suzuki: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1237–44.

    CAS  Google Scholar 

  32. O. Umezawa and K. Nagai: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1170–79.

    CAS  Google Scholar 

  33. M.E. Seniw, M.E. Fine, E.Y. Chen, M. Meshii, and J. Gray: in High Cycle Fatigue of Structural Materials, W.O. Soboyejo and T.S. Srivatsan, eds., TMS, Warrendale, PA, 1997, pp. 371–79.

    Google Scholar 

  34. J. Campbell, C. Nyahumwa, and N.R. Green: in Advances in Aluminum Casting Technology, M. Tiryakioglu and J. Campbell, eds., ASM INTERNATIONAL, Materials Park, OH, 1998, pp. 225–34.

    Google Scholar 

  35. Q.G. Wang, D. Apelian, and J.R. Griffiths: in Advances in Aluminum Casting Technology, M. Tiryakioglu and J. Campbell, eds., ASM INTERNATIONAL, Materials Park, OH, 1998, pp. 217–24.

    Google Scholar 

  36. F.T. Lee, J.F. Major, and F.H. Samuel: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1553–70.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Poirier, D.R. & Chen, W. Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy. Metall Mater Trans A 30, 2659–2666 (1999). https://doi.org/10.1007/s11661-999-0306-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0306-3

Keywords

Navigation