Skip to main content
Log in

Simulation of metal-matrix composite isothermal infiltration processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In pressure infiltration processing of metal-matrix composites, molten metal is injected under external pressure into a porous preform of the reinforcing phase and solidified, either during infiltration or after the mold is filled. If infiltration is isothermal, the physics of the process are similar to drainage phenomena encountered in soil mechanics. Using this similarity, a finite-element software is developed to simulate metal-matrix composite infiltration by adaptation of a code originally developed for soil mechanics. Solutions are given for isothermal infiltration of porous preforms by a molten metal under any increasing function of the applied pressure vs time, taking into account capillary phenomena. Experimental validation is performed using SAFFIL alumina fiber preforms infiltrated with an aluminum matrix in a series of isothermal infiltration experiments in unidirectional and axisymmetric configurations. Numerical and experimental data show good agreement, both in terms of infiltration kinetics and porosity distribution. The simulation tool can, thus, be applied for isothermal infiltration of complex geometries and boundary conditions and aid mold design and process parameter optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fukunaga: Proc. 9th Int. Conf. on Composite Materials, Madrid, A. Miravete, ed., University of Zaragoza and Woodhead Publ. Ltd., Zaragota, Spain, July 1993, pp. 355–62.

    Google Scholar 

  2. Continuous Fiber-Aluminium Matrix Composites (CF-AMC)—Product Information, 3M, Saint-Paul, MN, 1998.

  3. C. Zweben: JOM, 1992, pp. 15–23.

  4. Electrovac Composites—Product Information, Electrovac Worldwide, Klosterneuburg, Austria, 1998.

  5. M. Ebisawa, T. Hara, T. Hayashi, and H. Ushio: SAE Technical Paper Series, SAE, Warrendale, PA, 1991, pp. 1–13.

    Google Scholar 

  6. T. Hayashi, H. Ushio, and M. Ebisawa: SAE Technical Paper Series, SAE, Warrendale, PA, 1989, pp. 506–15.

    Google Scholar 

  7. H. Degischer, T. Schmitt, H. Leitner, and A. Mundl: in Ergebnisse der Werkstofforschung Band 3: Moderne Aluminiumlegierungen, M.O. Speidel and P.J. Uggowitzer, eds., Verlag Thubal-Kain, Zurich, 1990, pp. 205–15.

    Google Scholar 

  8. T. Donomoto, N. Miura, K. Funatani, and N. Miyake: SAE Technical Paper Series, SAE, Warrendale, PA, 1983, pp. 1927–37.

    Google Scholar 

  9. G. Essig, S. Mielke, and G. Bloschies: Metallurgy, 1990, vol. 44, pp. 434–37.

    CAS  Google Scholar 

  10. H. Demel, D. Stock, and R. Bauder: Motortechn. Z. (MTZ), 1991, vol. 52, p. 420.

    Google Scholar 

  11. A. Mortensen and L. Jin: Int. Mater. Rev., 1992, vol. 37, pp. 101–28.

    CAS  Google Scholar 

  12. R. Asthana, P.K. Rohatgi, and S. Tewari: Processing Adv. Mater. 1992, vol. 2, pp. 1–17.

    CAS  Google Scholar 

  13. A. Mortensen, L. Masur, J. Cornie, and M. Flemings: Metall. Trans. A, 1989, vol. 20A, pp. 2535–47.

    CAS  Google Scholar 

  14. V. Michaud: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, pp. 1–22.

    Google Scholar 

  15. V. Michaud, L.M. Compton, and A. Mortensen: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2145–52.

    CAS  Google Scholar 

  16. L. Masur, A. Mortensen, J. Cornie, and M. Flemings: Metall. Trans. A, 1989, vol. 20A, pp. 2549–57.

    CAS  Google Scholar 

  17. A. Mortensen and T. Wong: Metall. Trans. A, 1990, vol. 21A, pp. 2257–63.

    CAS  Google Scholar 

  18. A. Mortensen and V. Michaud: Metall. Trans. A, 1990, vol. 21A, pp. 2059–72.

    CAS  Google Scholar 

  19. J. Sommer and A. Mortensen: J. Fluid Mech., 1996, vol. 311, pp. 193–217.

    Article  CAS  Google Scholar 

  20. V. Michaud, J. Sommer, and A. Mortensen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 471–82.

    Article  CAS  Google Scholar 

  21. Z. Xia, Y. Zhou, Z. Mao, and B. Shang: Metall. Trans. B, 1992, vol. 23B, pp. 295–302.

    CAS  Google Scholar 

  22. E. Lacoste, M. Aboulfatah, M. Danis, and F. Girot: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2667–78.

    CAS  Google Scholar 

  23. X. Tong and J. Khan: National Heat Transfer Conf., ASME, New York, NY, 1996, vol. 1, pp. 39–48.

    Google Scholar 

  24. X. Tong and J. Khan: J. Heat Transfer, 1996, vol. 118, pp. 173–80.

    CAS  Google Scholar 

  25. I. Ohnaka: in Modeling of Casting Welding and Advanced Solidification Processes VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, pp. 337–48.

    Google Scholar 

  26. J. Zhu and I. Ohnaka: in Modelling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, vol. 7, pp. 23–31.

    Google Scholar 

  27. D. Biswas, J. Gatica, and S. Tewari: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 377–85.

    Article  CAS  Google Scholar 

  28. H. Kaufmann and A. Mortensen: Metall. Trans. A, 1992, vol. 23A, pp. 2071–73.

    CAS  Google Scholar 

  29. A. Scheidegger: The Physics of Flow through Porous Media, 3rd ed., University of Toronto Press, Toronto, 1974.

    Google Scholar 

  30. J. Bear and Y. Bachmat: Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Hingham, MA, 1990.

    Google Scholar 

  31. R. Brooks and A. Corey: Hydrology Papers, Colorado State University, Fort Collins, CO, 1964, pp. 1–25.

    Google Scholar 

  32. D. Aubry and A. Modaressi: Manuel Scientifique GEFDYN, Ecole Centrale Paris, Chatenay-Malabry, 1996.

    Google Scholar 

  33. M.T. VanGenuchten: Soil Sci. Am. Soc., 1980, pp. 892–98.

  34. G. Jackson and D. James: Can. J. Chem. Eng., 1986, vol. 64, pp. 364–74.

    Article  CAS  Google Scholar 

  35. K. Spitz and J. Moreno: A Practical Guide to Groundwater and Solute Transport Modeling, John Wiley and Sons, New York, NY, 1996.

    Google Scholar 

  36. D. Aubry, D. Chouvet, O. Ozanam, and J. Person: Econmig 86, Stuttgart, University of Stuttgart, September 16–18, Stuttgart, 1986.

    Google Scholar 

  37. D. Aubry and O. Ozanam-Hautefeuille: 6th Int. Conf. on Numerical Methods in Geomechanics, Innsbruck, Austria, 1989, G. Swoboda, ed., A.A. Balkema, vol. 3, pp. 757–63.

  38. H. Modaressi and L. Laloui: Proc. Eur. Specialty Conf. on Numerical Methods in Geotechnical Engineering, Santander, Spain, 1991, vol. 2, pp. 281–91.

  39. H. Kaufmann: Ph.D. Thesis, Leoben School of Mining, Leoben, Austria, 1992.

    Google Scholar 

  40. Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM, Philadelphia, PA, 1994, pp. 609–14.

  41. T. Dopler: Ph.D. Thesis, Ecole Centrale Paris, Chatenay-Malabry, 1999.

    Google Scholar 

  42. S. Oh, J. Cornie, and K. Russell: Metall. Trans. A, 1989, vol. 20A, pp. 533–41.

    CAS  Google Scholar 

  43. J.G. Li, L. Coudurier, and N. Eustathopoulos: J. Mater. Sci., 1989, vol. 24, pp. 1109–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopler, T., Modaressi, A. & Michaud, V. Simulation of metal-matrix composite isothermal infiltration processing. Metall Mater Trans B 31, 225–234 (2000). https://doi.org/10.1007/s11663-000-0041-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0041-z

Keywords

Navigation