Skip to main content
Log in

Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The equilibrium interfacial energy between a liquid iron alloy and a liquid slag is a key physical parameter in the design of steel-refining processes as high interfacial energies are desired to avoid emulsification of slag in steel and the creation of casting defects. During a chemical reaction between a liquid iron alloy droplet and a liquid slag, it is possible to observe by X-ray photography a number of dynamic interfacial phenomena such as droplet flattening, interfacial turbulence, and spontaneous emulsification that can potentially lead to serious processing problems. These dynamic phenomena have been studied during reactions between Fe-Al and Fe-Ti alloys and silica-containing slags, and the presence of significant interfacial disturbance has been observed during the times of high reaction rate between the slag and the metal. It is suggested that interfacial chemical reactions induce Marangoni and natural convection at the slag-metal interface. This interfacial flow gives rise to interfacial waves due to a Kelvin-Helmholtz instability. The waves grow, become unstable, and lead to spontaneous emulsification of slag in steel and steel in slag. Experiments using industrial samples and controlled laboratory tests have indicated that this phenomenon may be more common than once thought and could lead to some serious problems in the processing of steel alloys containing high quantities of aluminum and/or titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Belton: Metall. Trans., 1972, vol. 3, pp. 1465–69.

    CAS  Google Scholar 

  2. G.R. Belton: Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    CAS  Google Scholar 

  3. D.R. Sain and G.R. Belton: Metall. Trans. B, 1976, vol. 7B, pp. 235–44.

    CAS  Google Scholar 

  4. D.R. Sain and G.R. Belton: Metall. Trans. B, 1978, vol. 9B, pp. 403–07.

    CAS  Google Scholar 

  5. A.W. Cramb and G. R. Belton: Metall. Trans. B, 1981, vol. 12B, pp. 699–704.

    CAS  Google Scholar 

  6. A.W. Cramb and G.R. Belton: Metall. Trans. B, 1984, vol. 15B, pp. 655–61.

    Google Scholar 

  7. A.W. Cramb and G.R. Belton: Metall. Trans. B, 1989, vol. 20B, pp. 755–56.

    CAS  Google Scholar 

  8. M. Byrne and G.R. Belton: Metall. Trans. B, 1983, vol. 14B, pp. 441–49.

    CAS  Google Scholar 

  9. Y. Sasaki, S. Hara, D.R. Gaskell, and G.R. Belton: Metall. Trans. B, 1984, vol. 15B, pp. 563–71.

    CAS  Google Scholar 

  10. S. Sun, Y. Sasaki, and G.R. Belton: Metall. Trans. B, 1988, vol. 19B, pp. 959–65.

    CAS  Google Scholar 

  11. G.R. Belton: in Advanced Physical Chemistry for Process Metallurgy, N. Sano, W. Lu, and P.V. Riboud, eds., Academic Press, New York, NY, 1997.

    Google Scholar 

  12. G.R. Belton: Metall. Trans. B, 1993, vol. 24B, pp. 241–58.

    CAS  Google Scholar 

  13. J. Thomson: Phil. Mag., 1855, Ser. 4, vol. 10, pp. 330–33.

    Google Scholar 

  14. C. Marangoni: Nuovo Cim., 1878, Ser. 3, vol. 3, pp. 97–115.

    Google Scholar 

  15. H. Bernard: Ann Chim. Phys., 1901, Ser. 7, vol. 23, pp. 62–144.

    Google Scholar 

  16. G.R. Belton, T.J. Evans, and L. Stresov: Phil. Trans. R. Soc. London A 1998, vol. 356, pp. 941–53.

    Article  CAS  Google Scholar 

  17. K. Ishizaki: J. Jpn. Weld. Soc., 1965, vol. 34, p. 146.

    Google Scholar 

  18. J.R. Roper and D.L. Olsen: Weld. J., 1978, vol. 57, pp. 104s-107s.

    Google Scholar 

  19. K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Phil. Trans. R. Soc. London A 1998, vol. 356, pp. 911–25.

    Article  CAS  Google Scholar 

  20. A.W. Cramb, Y. Chung, J. Harman, A. Sharan, and I. Jimbo: The Slag Metal Interface and Associated Phenomena, Int. Slag Symp., Sydney, Australia, 1997, Iron and Steel Society, Warrendale, PA, pp. 35–50.

    Google Scholar 

  21. P. Kozakevich and G.R. Urbain: Mem. Sci. Rev. Metall., 1961, vol. 58, pp. 517–34.

    Google Scholar 

  22. I. Jimbo and A.W. Cramb: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (1), pp. 26–35.

    CAS  Google Scholar 

  23. B.F. Dyson: Trans. TMS-AIME, 1963, vol. 277, pp. 1098–1102.

    Google Scholar 

  24. B.J. Keene: Int. Mater. Rev., 1988, vol. 33 (1), p. 1.

    CAS  Google Scholar 

  25. A. Kasama, A. McLean, W.A. Miller, Z. Morita, and M.J. Ward: Can. Met. Q., 1983, vol. 22, p. 9.

    CAS  Google Scholar 

  26. B. Von Szyszkowski: Z. Phys. Chem., 1908, vol. 64, pp. 385–414.

    Google Scholar 

  27. A.W. Cramb and I. Jimbo: E.T. Turkdogan Symp., 1994, Iron and Steel Society, Warrendale, PA, pp. 195–206.

    Google Scholar 

  28. Y. Chung and A.W. Cramb: Steel Res., 1999, vol. 70 (8–9), pp. 325–29.

    CAS  Google Scholar 

  29. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    CAS  Google Scholar 

  30. K. Ogino and S. Hara: Tetsu-to-Hagané, 1977, vol. 63, p. 2141.

    CAS  Google Scholar 

  31. A. Sharan and A.W. Cramb: Metall. Mater. Trans. B, 1997, vol. 26B, pp. 465–72.

    Google Scholar 

  32. S.I. Popel, L.M. Shergin, and B.V. Tsvareski: J. Phys. Chem., 1969, vol. 43, p. 5.

    Google Scholar 

  33. C.H.P. Lupis: Chemical Thermodynamics of Materials, North-Holland, Amsterdam, 1983.

    Google Scholar 

  34. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  35. Y. Chung: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1998.

    Google Scholar 

  36. P. Riboud and L.D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    CAS  Google Scholar 

  37. K. Ogino, S. Hara, T. Miwa, and S. Kimoto: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 522–2150.

    Google Scholar 

  38. K. Ogino, N. Nogi, and C. Hosoi: Tetsu-to-Hagané, 1983, vol. 69 (16), pp. 1989.

    CAS  Google Scholar 

  39. H. Gaye, L.D. Lucas, M. Olette, and P.V. Biboud: Can. Metall. Q., 1984, vol. 23, pp. 179–91.

    CAS  Google Scholar 

  40. T. Utigard, J.M. Toguri, and K. Grjotheim: Can. Metall. Q., 1987, vol. 26 (2), pp. 129–35.

    CAS  Google Scholar 

  41. A.W. Cramb and I. Jimbo: Steel Res., 1989, vol. 60, pp. 157–65.

    CAS  Google Scholar 

  42. L.A. Girifalco and R.J. Good: J. Chem. Phys., 1957, vol. 61 (Jul.), pp. 904–09

    Article  CAS  Google Scholar 

  43. M. Humenik and W.D. Kingery: J. Am. Ceram. Soc., 1954, vol. 37, p. 18.

    Article  CAS  Google Scholar 

  44. J.E. McDonald and J.G. Eberhart: Trans. AIME, 1965, vol. 233, p. 512.

    CAS  Google Scholar 

  45. Y.V. Sveshkov, V.I. Mogilenskii, Y.A. Polonskii, and O.A. Valman: Z. Prikl. Khim., 1976, vol. 49, p. 2629.

    CAS  Google Scholar 

  46. T. Hibiya, S. Nakamura, K. Mukai, Z. Niu, N. Imaishi, S. Nishizawa, A. Yoda, and M. Koyama: Phil. Trans. R. Soc. London A, 1998, vol. 356, pp. 899–909.

    Article  CAS  Google Scholar 

  47. A. Croll, W. Muller-Siebert, and R. Nitsche: Mater. Res. Bull., 1989, vol. 24, p. 995.

    Article  Google Scholar 

  48. D. Kozakevitch, G. Urbain, and M. Sage: Rev. Metall., 1955, vol. 52, p. 161.

    CAS  Google Scholar 

  49. H. Ooi, T. Nozaki, and Y. Yoshii: Trans. Iron Steel Inst. Jpn., 1974, vol. 14, p. 9.

    Google Scholar 

  50. P.V. Riboud and L.D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    CAS  Google Scholar 

  51. A. Sharan and A.W. Cramb: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 87–94.

    CAS  Google Scholar 

  52. Y. Chung and A.W. Cramb: Phil. Trans. R. Soc. London A, 1998, vol. 356, pp. 981–93.

    Article  CAS  Google Scholar 

  53. I. Jimbo, Y. Chung, and A.W. Cramb: Trans. Iron Steel Inst. Jpn., 1996, vol. 36, pp. S43-S45.

    Google Scholar 

  54. H. Ooi, T. Nozaki, and H. Yoshii: Trans. Iron Steel Inst. Jpn., 1974, vol. 14, pp. 9–16.

    Google Scholar 

  55. P. Riboud and L.D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    CAS  Google Scholar 

  56. M. Liukkonen, L.E.K. Holappa, and D. Mu: 5th Int. Conf. on Molten Slags and Fluxes and Salts, Sydney, Australia, Iron and Steel Society, Warrendale, PA, pp. 163–68.

  57. M. Ashizuka, M. Tokuda, and M. Ohtani: Tetsu-to-Hagane, 1968, 54, p. 1437.

    CAS  Google Scholar 

  58. F.D. Richardson: Can. Metall. Q., 1982, vol. 21, pp. 111–19

    CAS  Google Scholar 

  59. A. Sharan: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1993.

    Google Scholar 

  60. S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability, Dover Publications Inc., New York, NY, 1961, pp. 485–86.

    Google Scholar 

  61. S. Gad: Arch. Anat. Physiol., Lpz., 1878, p. 181.

  62. T.K. Sherwood and J.C. Wei, Ind. Eng. Chem., 1957, vol. 49, p. 1030.

    Article  CAS  Google Scholar 

  63. J.T. Davies and F. Haydon: Proc. 2nd Int. Congr. Surface Activity, Butterworth and Co., London, 1957, pp. 417 and 476.

    Google Scholar 

  64. J.T. Davies and E.K. Rideal: Interfacial Phenomena, Academic Press, New York, NY, 1963, 360.

    Google Scholar 

  65. E. Quincke: Wiedemans Ann., 1888, vol. 35, p. 593.

    Google Scholar 

  66. E.S. Gopal: in Emulsion Science, P. Sherman, ed., Academic Press, London, p. 1.

  67. G.S. Bainbridge and H. Sawistowski: Chem. Eng. Sci., 1964, vol. 19, p. 992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium,” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, Y., Cramb, A.W. Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems. Metall Mater Trans B 31, 957–971 (2000). https://doi.org/10.1007/s11663-000-0072-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0072-5

Keywords

Navigation