Skip to main content
Log in

Depth of oscillation marks forming in continuous casting of steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The surface of continuously cast slabs is characterized by the presence of oscillation marks. Direct linkage of the continuous casting process and hot rolling process requires that cast slabs should be free of surface defects. In the present work, a mechanical model has been developed for the prediction of the depth of oscillation marks of the depression type. It is based on the beam bending theory and on viscoplastic material behavior. The downward movement of the strand is taken correctly into account, which has not been done in previous models. Auxiliary parts of the model are the models for the determination of the temperatre field and of the fluid flow and pressure in the meniscus region and in the gap between strand and mold. The deflection of the shell is computed as a function of time and distance from the shell tip. The retained deflection, which corresponds to the depth of oscillation marks observed on the slab surface, is determined for different values of stroke, frequency, and casting velocity. The theoretical data are compared with the measured data as available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Takeuchi and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 493–509.

    CAS  Google Scholar 

  2. T. Emi, H. Nakato, Y. Iida, K. Emoto, R. Tachibana, T. Imai, and H. Bada: National Open Hearth and Basic Oxygen Steel Conf. Proc., 1978, vol. 61, pp. 350–61.

    CAS  Google Scholar 

  3. H. Tomono: Thèse No. 330, École Polytechnique Fédérale de Lausanne, Lausanne, 1979.

    Google Scholar 

  4. D.R. Bland: IMA J. Appl. Mathematics, 1984, vol. 32 pp. 89–112.

    Article  Google Scholar 

  5. K. Schwerdtfeger, K.H. Tacke, and K. Minami: EC Project No. 7210-CA/1313/311/810 Reports 1 to 5 and Final Report EUR 9560 / I+II EN, 1985.

  6. H. Nakato, T. Nozaki, Y. Habu, H. Oka, T. Ueda, Y. Kitano, and T. Koshikawa: Steelmaking Conf. Proc., 1985, vol. 68, pp. 361–65.

    Google Scholar 

  7. S. Takeuchi, Y. Miki, S. Itoyama, K. Kobayashi, K. Sorimachi, and T. Sakuraya: Steelmaking Conf. Proc., 1991, pp. 73–77.

  8. H. Steinrück, C. Rudischer, and W. Schneider: Nonlinear Analysis, Theory, Methods & Applications, Proc. 2nd World Congr. of Nonlinear Analysis, Elsevier Science Ltd., New York, NY, 1997, vol. 30 (8), pp. 4915–25.

    Google Scholar 

  9. H. Steinrück, C. Rudischer, and W. Schneider: in Modeling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 639–46.

    Google Scholar 

  10. J.R. King, A.A. Lacey, C.P. Please, P. Wilmott, and A. Zoryk: Math. Eng. Ind., 1993, vol. 4 (2), pp. 91–106.

    Google Scholar 

  11. T. Suzuki, K.H. Tacke, K. Wünnenberg, and K. Schwerdtfeger: Iron-making and Steelmaking, 1988, vol. 15, pp. 90–100.

    CAS  Google Scholar 

  12. T. Tanaka: CAMP-ISIJ, 1989, vol. 2, p. 1263.

    Google Scholar 

  13. H. Sha, R. Diedrichs, and K. Schwerdtfeger: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 305–14.

    Article  CAS  Google Scholar 

  14. R.H. Weber and R. Gans: Repertorium der Physik, B.G. Teubner-Verlag, Leipzig, 1916.

    Google Scholar 

  15. K. Harste and K. Schwerdtfeger: Mater. Sci. Technol. 1996, vol. 12, pp. 378–84.

    CAS  Google Scholar 

  16. O. Reynolds: Phil. Trans. R. Soc. London, 1886, vol. 177, pp. 157–234.

    Article  Google Scholar 

  17. K. Schwerdtfeger: Advanced Physical Chemistry for Process Metallurgy, Academic Press Ltd., 1997, pp. 381–419.

  18. K.H. Spitzer, K. Harste, B. Weber, P. Monhein, and K. Schwerdtfeger: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (7), pp. 848–56.

    CAS  Google Scholar 

  19. H. Takeuchi, S. Matsumura, R. Hidaka, Y. Nagano, and Y. Suzuki: Tetsu-to-Hagané, 1983, vol. 69, pp. 248–53.

    Google Scholar 

  20. S. Itoyama: Ph. D. Dissertation, Tohoku University, Sendai, 1997.

    Google Scholar 

  21. E. Schürmann, L. Fiege, H.P. Kaiser, and T. Klages: Stahl Eisen, 1986, vol. 106, pp. 1196–1201.

    Google Scholar 

  22. A.W. Cramb and F.J. Mannion: Steelmaking Conf. Proc., 1985, vol. 68, pp. 349–59.

    Google Scholar 

  23. B.G. Thomas, D. Lui, and B. Ho: in Sensors and Modeling in Materials Processing: Techniques and Applications, S. Viswanathan, R.G. Reddy, and J.C. Malas, eds., TMS, Warrendale, PA, 1997, pp. 117–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwerdtfeger, K., Sha, H. Depth of oscillation marks forming in continuous casting of steel. Metall Mater Trans B 31, 813–826 (2000). https://doi.org/10.1007/s11663-000-0118-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0118-8

Keywords

Navigation