Skip to main content
Log in

Finding boundary conditions: A coupling strategy for the modeling of metal casting processes: Part I. Experimental study and correlation development

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A generalized temperature boundary condition coupling strategy for the modeling of conventional casting processes was implemented via experiments and numerical simulations with commercial purity aluminum, aluminum alloy, and tin specimens in copper, graphite, and sand molds. This novel strategy related the heat transfer coefficient at the metal-mold interface to the following process variables: the size of the air gap that forms at the metal-mold interface, the roughness of the mold surface, the conductivity of the gas in the gap, and the thermophysical properties of both the metal and mold. The objective of this study was to obtain, apply, and evaluate the effect of incorporating an experimentally derived relationship for specifying transient heat transfer coefficients in a general conventional casting process. The results are presented in two parts. Part I details the implementation of a systematic experimental approach not limited to a specific process to determine the heat transfer coefficient and characterize the formation of the air gap at the metal-mold interface. The heat transfer mechanisms at the interface were identified, and seen to vary in magnitude during four distinct stages, as the air gap formed and grew. A semiempirical inverse equation was used to characterize the heat transfer coefficient-air gap relationship, across the various stages, for experimental data from the literature and this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

air gap width in air gap correlations, mm

C :

constant in the air gap correlations, W m−2 K−1

E :

expansion rod error, m

h :

heat transfer coefficient, W m−2 K−1

htc (HTC):

heat transfer coefficient, W m−2 K−1

k :

conductivity, W m−1 K−1 or conductivity related parameter in the air gap correlations, W−1 m2 K mm−1

L :

nonlinearity error, m

M :

any variable of interest

P :

pressure, N m−2

r :

r coordinate or resistivity related parameter in the air gap correlations, W−1 m2 K

R :

thermal resistance, W−2 m2 K (for the heat transfer equations) or A/D resolution error, m

S :

stability error, m

T :

temperature, K

x :

x coordinate

ɛ :

emmisivity (for the heat transfer equations)

σ :

Stefan-Boltzman constant, 5.67051×10−8 W m−2 K−4

cond:

conduction

conv:

convection

harm:

harmonic

i :

ith direction, coordinate

int:

interface

T1 through T6:

identifiers for thermal resistance terms

*:

dimensionless

References

  1. J. Savage: J. Iron Steel Inst., 1962, vol. 200, pp. 41–57.

    CAS  Google Scholar 

  2. J. Majumdar, B.C. Raychaudhuri, and S. Dasgupta: Int. J. Heat Mass Transfer, 1981, vol. 24(7), pp. 1089–95.

    Article  CAS  Google Scholar 

  3. B.P. Winter, T.R. Ostrom, T.A. Sleder, P.K. Trojan, and R.D. Pehlke: AFS Trans., 1987, vol. 93, pp. 259–66.

    Google Scholar 

  4. J. Issac, G.P. Reddy, and G.K. Sharma: Inst. Ind. Foundrymen, 1984, vol. 33, pp. 15–19.

    Google Scholar 

  5. Y. Nishida, W. Droste, and S. Engler: Metall. Trans. B, 1986, vol. 17B, pp. 833–44.

    CAS  Google Scholar 

  6. I.M. Mackenzie and A. Donald: J. Iron Steel Inst., 1950, vol. 166, pp. 19–24.

    CAS  Google Scholar 

  7. D.M. Lewis and J. Savage: Met. Rev., 1956, vol. 1, pp. 65–78.

    CAS  Google Scholar 

  8. C. Lukens, T.X. Hou, and R.D. Pelke: AFS Trans., 1990, vol. 98, pp. 63–70.

    CAS  Google Scholar 

  9. D. Pehlke: in Modeling of Casting Welding, and Advanced Solidification Processes—VII, TMS, Warrendale, PA, 1995, pp. 373–380.

    Google Scholar 

  10. V. Sahai and R.A. Overfelt: in Modeling of Casting, Welding, and Advanced Solidification Processes—VII, TMS, Warrendale, PA, 1995, pp. 417–24.

    Google Scholar 

  11. M. Trovant: Ph.D. Thesis, University of Toronto, Toronto, 1998.

    Google Scholar 

  12. K. Ho and R.D. Pehlke: AFS Trans., 1984, vol. 61, pp. 587–98.

    Google Scholar 

  13. T.S. Prasanna Kumar and K. Narayan Prabhu: Metall. Trans. B, 1991, vol. 22B, pp. 717–27.

    Google Scholar 

  14. S.W. Hao, Z.Q. Zhang, J.Y. Chen, and P.C. Liu: AFS Trans., 1987, vol. 95, pp. 601–08.

    CAS  Google Scholar 

  15. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci., 1991, vol. 26, pp. 1729–33.

    Article  CAS  Google Scholar 

  16. M.A. Taha, N.A. El-Mahallawy, A.M. Assar, and R.M. Hammouda: J. Mater. Sci., 1992, vol 27, pp. 3467–73.

    Article  CAS  Google Scholar 

  17. S. Song, M.M. Yovanovich, and K. Nho: J. Thermophys., 1992, vol. 6(1), pp. 62–68.

    CAS  Google Scholar 

  18. F. Chiesa: AFS Trans., 1990, vol. 98, pp. 193–200.

    CAS  Google Scholar 

  19. M.R. Sridhar and M.M. Yovanovich: J. Thermophys. Heat Transfer, 1994, vol. 8, pp. 633–40.

    Article  CAS  Google Scholar 

  20. M.M. Yovanovich: Heat Transfer Vol. 1, Hemisphere, New York, NY, 1986.

    Google Scholar 

  21. P. J. Schneider: in Handbook of Heat Transfer, McGraw-Hill, New York, NY, 1973.

    Google Scholar 

  22. NANMAC Temperature Handbook, NANMAC Corp., Framingham, MA, 1989.

  23. Y. Ruan, J.C. Liu, and O. Richmond: Inv. Prob. Eng., 1994 vol. 1, pp. 45–69.

    CAS  Google Scholar 

  24. P.G.Q. Netto, R.P. Tavares, and R.I.L. Guthrie: Proc. 36th Int. Symp.: Light Met., CIM, Sudbury, 1997, pp. 393–407.

    Google Scholar 

  25. µMac-6000 Operations, Concepts, Command References, Programming and Users Manual, Analog Devices Inc., Norwood, MA, 1988.

  26. P. Vicente-Hernandez, F. Decultieux, P. Schmidt, L. Svensson, and C. Levaillant: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 805–12.

    CAS  Google Scholar 

  27. M. Bellet, F. Decultieux, M. Menai, F. Bay, C. Levaillant, J.L. Chenot, P. Schmidt, and I.L. Svensson: Metall. Trans. B, 1996, vol. 27B, pp. 81–99.

    CAS  Google Scholar 

  28. D.R. Gunasegaram, D. Celentano, and T.T. Nguyen: Proc. Int. Symp. on Application of Sensors & Modeling in Materials Processing II, TMS Annual Meeting, Feb. 9–13, Orlando, FL, 1997.

  29. ASM Handbook, vol. 5, Surface Engineering, ASM INTERNATIONAL, Materials Park, OH, 1996.

  30. T.R. Thomas and M.I. Prode: Rough Surfaces, Longman Publishing, London, 1982.

    Google Scholar 

  31. J.M. Bennett and L. Mattsson: Introduction to Surface Roughness and Scattering, Optical Society of America, Washington, DC, 1989.

    Google Scholar 

  32. N.V. Suryanarayana: Engineering Heat Transfer, West Publishing Co., Los Angeles, CA, 1995.

    Google Scholar 

  33. J. Campbell: Mater. Sci. Technol., 1991, vol. 7, pp. 885–94.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Argyropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovant, M., Argyropoulos, S. Finding boundary conditions: A coupling strategy for the modeling of metal casting processes: Part I. Experimental study and correlation development. Metall Mater Trans B 31, 75–86 (2000). https://doi.org/10.1007/s11663-000-0132-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0132-x

Keywords

Navigation