Skip to main content
Log in

A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and solidification phenomena

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-integrity castings require sophisticated design and manufacturing procedures to ensure they are essentially macrodefect free. Unfortunately, an important class of such defects—macroporosity, misruns, and pipe shrinkage—are all functions of the interactions of free surface flow, heat transfer, and solidication in complex geometries. Because these defects arise as an interaction of the preceding continuum phenomena, genuinely predictive models of these defects must represent these interactions explicitly. This work describes an attempt to model the formation of macrodefects explicitly as a function of the interacting continuum phenomena in arbitrarily complex three-dimensional geometries. The computational approach exploits a compatible set of finite volume procedures extended to unstructured meshes. The implementation of the model is described together with its testing and a measure of validation. The model demonstrates the potential to predict reliably shrinkage macroporosity, misruns, and pipe shrinkage directly as a result of interactions among free-surface fluid flow, heat transfer, and solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

1 or ∂/∂t in Table I

C :

Carmen-Kozeny constant

C p :

specific heat

D :

mold thickness

d :

characteristic “structure” or grain size dimension

f :

solid fraction

f c :

coherency point

f e :

eutectic point

F μ :

smooth switching function

g :

acceleration due to gravity

g :

gas

h :

enthalpy

K :

permeability

L :

latent heat

m :

metal

n :

normal vector

P :

pressure

P ames :

ambient pressure

P I :

initiation pressure

Q air :

air flow rate through the mold

Q v :

volume source

Q s :

surface flux source

R :

flow resistance in the mold

r :

pore radius

S :

mass sources

S v :

specific surface area

S D :

Darcy source term

T :

temperature

u :

liquid velocity

v slip :

slip velocity

ε’:

mold porosity

μ :

viscosity

ρ :

density

φ :

transported variable

σ :

surface tension

φ m :

metal fraction

Γ:

diffusion coefficient

References

  1. Modeling of Casting, Welding and Advanced Solidification Processes, TMS, Warrendale, PA, 1980–98, vols. 1–8.

  2. D.R. Poirier: In Modeling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 837–848.

    Google Scholar 

  3. J. Campbell: Castings, Butterworth-Heinemann Ltd., Oxford, United Kingdom, 1991.

    Google Scholar 

  4. J. Herbertson and P. Austin: In Modeling of Casting, Welding and Advanced Solidification Processes VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, pp. 689–700.

    Google Scholar 

  5. S.C. Flood, L. Katgerman, A.H. Langville, S. Rogers, and C.M. Reed: In Light Metals 89, TMS, Warrendale, PA, 1989, pp. 943–47.

    Google Scholar 

  6. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Int. Cast Met. J., 1982, vol. 7, pp. 52–63.

    Google Scholar 

  7. R.K. Foran, T. Hansen, and B. Mueller: In Modelling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 771–77.

    Google Scholar 

  8. M. Barkhudarov and C.W. Hirt: In Modelling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 935–46.

    Google Scholar 

  9. K.A. Pericleous, G. Moran, P. Chow, and K.S. Chan: Adv. Comp. Math., 1996, vol. 6, pp. 295–308.

    Article  Google Scholar 

  10. K. Pericleous, S. Bounds, G. Moran, M. Cross, and P. Chow: Appl. Math. Modelling, 1998, vol. 22, pp. 895–906.

    Article  Google Scholar 

  11. A. Shapiro, W. Stein, and P. Raboui: in Modelling of Casting Welding and Advanced Solidification Processes VI, T.S. Piwonka eds., V. Voller, and L. Katgerman, TMS, Warrendale, PA, 1993, pp. 493–500.

    Google Scholar 

  12. M. Cross: in Modeling of Casting, Welding and Advanced Solidification Processes VI, T.S. Piwonka eds, V. Voller, and L. Katgerman, TMS, Warrendale, PA, 1993, pp. 115–26.

    Google Scholar 

  13. P. Chow, M. Cross, and K. Pericleous: Appl. Math. Modelling, 1996, vol. 20, pp. 170–83.

    Article  Google Scholar 

  14. N. Croft, K. Pericleous, and M. Cross: in Numerical Methods in Laminar and Turbulent Flow, C. Taylor and P. Durbetaki, eds., Pineridge Press, Swansea, U.K., 1995, vol. 9, pp. 1269–80.

    Google Scholar 

  15. N. Croft: Ph.D. Thesis, University of Greenwich, London, 1998.

    Google Scholar 

  16. P. Chow and M. Cross: Int. Num. Methods Eng., 1992, vol. 35, pp. 1849–70.

    Article  Google Scholar 

  17. K. Pericleous, M. Hughes, M. Cross, and D. Cook: in Modelling of Casting, Welding and Advanced Solidification Processes VII, M. Cross and I. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 173–80.

    Google Scholar 

  18. C. Bailey and M. Cross: Int. Jr. Num. Methods Eng., 1995, vol. 38, pp. 1757–76.

    Article  Google Scholar 

  19. G.A. Taylor, C. Bailey, and M. Cross: Appl. Math. Modelling, 1995, vol. 19, pp. 746–70.

    Article  Google Scholar 

  20. G.A. Taylor, C. Bailey, and M. Cross: in Modelling of Casting, Welding and Advanced Solidification Processes VII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1988, pp. 755–67.

    Google Scholar 

  21. M. Cross, C. Bailey, P. Chow, and K. Pericleous: in Numerical Methods in Industrial Processes, NUMIFORM 92, J.-L. Chenot, R.D. Wood, and O.C. Zienkiewicz, eds., Rotterdam, Balkema, 1992, pp. 787–92.

    Google Scholar 

  22. J. Ewer, B. Knight, and D. Cowell: Adv. Eng. Software, 1995, vol. 22, pp. 153–68.

    Article  Google Scholar 

  23. PHYSICA, University of Greenwich, London, see http://physica.gre.ac.uk.

  24. C.M. Rhie and W.I. Chow: AIAA, 1982, vol. 21, pp. 1527–32.

    Google Scholar 

  25. N.M. Jai and J.A. Goldak: in Modelling of Casting, Welding and Advanced Solidification Processes VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 57–65.

    Google Scholar 

  26. Z.A. Xu and F. Mampaey: Modelling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, 1998, pp. 45–51.

    Google Scholar 

  27. S. Chang and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2708–21.

    CAS  Google Scholar 

  28. C.Y. Wang and C. Beckermann: Metall. Trans. A, 1996, vol. 27A, pp. 2754–64.

    CAS  Google Scholar 

  29. M.C. Schneider and C. Beckermann: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 3455–73.

    Article  CAS  Google Scholar 

  30. D.R. Poirier: Metall. Trans. B, 1987, vol. 18B, pp. 245–55.

    CAS  Google Scholar 

  31. P. Ocansey, M.S. Bhat, D.P. Poirier, and T.L. Finn: Light Met., 1994, pp. 807–12.

  32. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  33. V.R. Voller and C.R. Swaminathan: Num. Heat Transfer B, 1991, vol. 19, pp. 175–89.

    Google Scholar 

  34. K.A. Pericleous and S.N. Drake: in Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes, N.C. Markatos, D. Tatchell, M. Cross, and N. Rhodes, eds., Springer-Verlag, Berlin, 1985, pp. 375–85.

    Google Scholar 

  35. J.F. Evans, J. Beech, and D.H. Kirkwood: Cast Met., 1992, vol. 5, pp. 130–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounds, S., Moran, G., Pericleous, K. et al. A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and solidification phenomena. Metall Mater Trans B 31, 515–527 (2000). https://doi.org/10.1007/s11663-000-0157-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0157-1

Keywords

Navigation