Skip to main content

Advertisement

Log in

Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as specific heat, heat content, entropy, enthalpy, and Gibbs energy); the cation distribution between octahedral and tetrahedral sites in spinel; the oxygen partial pressure over single-phase, two-phase, and three-phase regions; the phase boundaries (liquidus, solidus, and subsolidus); and the tie-lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Pelton, C.W. Bale, and W.T. Thompson: The FACT System, Ecole Polytechnique, Montreal, 1998, http://www.crct.polymtl.ca.

    Google Scholar 

  2. E. Jak, H.G. Lee, and P.C. Hayes: J. Met. Mater. (Korea), 1995, vol. 1, pp. 1–8.

    CAS  Google Scholar 

  3. E. Jak, S.A. Degterov, P. Wu, P.C. Hayes, and A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1011–18.

    Article  CAS  Google Scholar 

  4. E. Jak, S.A. Degterov, P.C. Hayes, and A.D. Pelton: Proc. 5th Int. Conf. on Molten Slags, Fluxes and Salts, Iron and Steel Society, AIME, Sydney, 1997, pp. 621–28.

    Google Scholar 

  5. E. Jak, S.A. Degterov, P.C. Hayes, and A.D. Pelton: Can. Metall. Q., 1998, vol. 37, pp. 41–47.

    Article  CAS  Google Scholar 

  6. E. Jak, B. Zhao, P.C. Hayes, S.A. Degterov, and A.D. Pelton: in Zinc and Lead Processing, J.E. Dutrizac, J.A. Gonzalez, G.L. Bolton, and P. Hancock, eds., TMS-CIM, 1998, pp. 313–33.

  7. E. Jak, N. Liu, and P.C. Hayes: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 541–53.

    Article  CAS  Google Scholar 

  8. E. Jak, B. Zhao, N. Liu, and P.C. Hayes: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 21–27.

    Article  CAS  Google Scholar 

  9. E. Jak, B. Zhao, and P.C. Hayes: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1195–1201.

    Article  CAS  Google Scholar 

  10. A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17B, pp. 805–15.

    CAS  Google Scholar 

  11. S.A. Degterov and A.D. Pelton: J. Phase Equilibrium, 1996, vol. 17 (6), pp. 476–87.

    CAS  Google Scholar 

  12. S.A. Degterov and A.D. Pelton: J. Phase Equilibrium, 1996, vol. 17 (6), pp. 488–94.

    CAS  Google Scholar 

  13. S.A. Degterov and A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 235–42.

    Article  CAS  Google Scholar 

  14. K. Tanida and T. Kitamura: Tohoku Daigaku Senko Seiren Kenkyusho Iho, 1984, vol. 40 (1), pp. 71–76.

    CAS  Google Scholar 

  15. T. Yamaguchi and T. Takei: Scientific Papers Inst. Phys. Chem. Res., 1959, vol. 53, pp. 207–15.

    CAS  Google Scholar 

  16. R.L. Benner and H. Kenworthy: Bureau of Mines. United States Department of the Interior Report. No. 6754, U.S. Government Printing Office, Washington, DC, 1966, pp. 1–43.

    Google Scholar 

  17. B. Sundman: J. Phase Equilibrium, 1991, vol. 12, pp. 127–40.

    CAS  Google Scholar 

  18. T.I. Barry, A.T. Dinsdale, J.A. Gisby, B.H. Hallstedt, M. Hillert, B. Jansson, S. Jonsson, B. Sundman, and J.R. Taylor: J. Phase Equilibrium, 1992, vol. 13, pp. 459–75.

    CAS  Google Scholar 

  19. M. Hillert and L.-I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  20. M. Hillert, B. Jansson, and B. Sundman: Z. Metallkd., 1988, vol. 79, pp. 81–87.

    CAS  Google Scholar 

  21. H.S.C. O’Neill and A. Navrotsky: Am. Mineral., 1983, vol. 68, pp. 181–94.

    CAS  Google Scholar 

  22. H.S.C. O’Neill and A. Navrotsky: Am. Mineral., 1984, vol. 69, pp. 733–53.

    CAS  Google Scholar 

  23. M. Hillert and M. Jarl: CALPHAD, 1978, vol. 2, pp. 227–38.

    Article  CAS  Google Scholar 

  24. M. Hillert, B. Burton, S.K. Saxena, S.A. Degterov, K.C. Hari Kumar, H. Ohtani, F. Aldinger, and A. Kussmaul: CALPHAD, 1997, vol. 21, pp. 248–63.

    Article  Google Scholar 

  25. F. Kohler: Monatsh. Chemie, 1960, vol. 91, p. 738.

    Article  CAS  Google Scholar 

  26. A.D. Pelton: CALPHAD, 1988, vol. 12, pp. 127–42.

    Article  CAS  Google Scholar 

  27. P.J. Spencer and O. Kubaschewski: CALPHAD, 1978, vol. 2, pp. 147–67.

    Article  CAS  Google Scholar 

  28. P. Wu: Ph.D. Thesis, Ecole Polytechnique de Montreal, Montreal, 1992.

    Google Scholar 

  29. G.A. Waychunas: Rev. Mineral., 1991, vol. 25, pp. 11–68.

    CAS  Google Scholar 

  30. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1.

  31. C.C. Wu and T.O. Mason: J. Am. Ceram. Soc., 1981, vol. 64, pp. 520–22.

    Article  CAS  Google Scholar 

  32. H.S.C. O’Neill: Eur. J. Mineral., 1992, vol. 4, pp. 571–80.

    CAS  Google Scholar 

  33. J.C. Waerenborgh, M.O. Figueiredo, J.M.P. Cabral, and L.C.J. Pereira: J. Solid State Chem., 1994, vol. 111 (2), pp. 300–09.

    Article  CAS  Google Scholar 

  34. E.F. Westrum and D.M. Grimes: J. Phys. Chem. Solids, 1957, vol. 3, pp. 44–49.

    Article  CAS  Google Scholar 

  35. E.G. King: J. Phys. Chem., 1956, vol. 60, pp. 410–12.

    Article  CAS  Google Scholar 

  36. M.L. Bochirol: Compt. Rend., 1951, vol. 232 (16), pp. 1474–77.

    CAS  Google Scholar 

  37. N.A. Landiya: Calculation of High-Temperature Heat Capacities of Solid Inorganic Substances from Standard Entropy, Izd. Akad. Nauk Gruz. SSR, Tbilisi, 1962.

    Google Scholar 

  38. A. Navrotsky and O.J. Kleppa: J. Inorg. Nucl. Chem., 1968, vol. 30 (1), pp. 479–98.

    Article  CAS  Google Scholar 

  39. L.A. Reznitskii: Ph.D. Thesis, Moscow State University, Moscow, 1960.

    Google Scholar 

  40. L.A. Reznitskii and K.G. Homyakov: Vestnik Mosk. Univ., 1960, vol. 1, pp. 41–44.

    Google Scholar 

  41. I.G.F. Gilbert and J.A. Kitchener: J. Chem. Soc., 1956, part III, pp. 3924–26.

  42. Y.D. Tretyakov: Thermodynamics of Ferrites, Izd. Khimiya, Leningrad, 1967, pp. 218–34.

    Google Scholar 

  43. J.M. Claude, M. Zanne, C. Gleitzer, and J. Aubry: Mem. Sci. Rev. Metall., 1977, vol. 74 (4), pp. 229–36.

    CAS  Google Scholar 

  44. A.A. Lykasov, V.V. D’yachuk, M.S. Pavlovskaya, and T.V. Popova: Izv. Akad. Nauk SSSR, Neorg. Mater., 1991, vol. 27 (3), pp. 539–43.

    CAS  Google Scholar 

  45. A.A. Lykasov, V.V. D’yachuk, and M.S. Pavlovskaya: Izv. Akad. Nauk SSSR, Neorg, Mater., 1991, vol. 27 (10), pp. 2153–56.

    CAS  Google Scholar 

  46. S. Itoh and T. Azakami: Metall. Rev. MMIJ, 1993, vol. 10 (2), pp. 113–33.

    CAS  Google Scholar 

  47. G.P. Popov, M.I. Simonova, T.A. Ugol’nikova, and G.I. Chufarov: Dokl. Akad. Nauk SSSR, 1963, vol. 148 (2), pp. 357–60.

    CAS  Google Scholar 

  48. I. Katayama, J. Shibata, M. Aoki, and Z. Kozuka: Trans. Jpn. Inst. Met., 1977, vol. 18, pp. 743–49.

    CAS  Google Scholar 

  49. K. Fitzner: Thermochim. Acta, 1979, vol. 31, pp. 227–36.

    Article  CAS  Google Scholar 

  50. A.A. Lykasov, V.V. D’yachuk, and G.I. Sergeev: Izv. Akad. Nauk SSSR, Neorg. Mater., 1985, vol. 21 (4), pp. 604–07.

    CAS  Google Scholar 

  51. G.I. Sergeev, A.A. Lykasov, G.G. Mikhailov, and I.F. Khudyakov: Elecktrokhimiya, 1985, vol. 21 (4), pp. 455–60.

    CAS  Google Scholar 

  52. S.C. Schaefer and R.A. McCune: Metall. Trans. B, 1986, vol. 17B, pp. 515–21.

    Google Scholar 

  53. S. Itoh, K. Sato, S. Nakazawa, and T. Azakami: Shigen-to-Sozai, 1989, vol. 105 (10), pp. 739–43.

    CAS  Google Scholar 

  54. E. Jak, S.A. Degterov, A.D. Pelton, and P.C. Hayes: Metall. Mater. Trans. B, 2001, In Press.

  55. R. Dieckmann: Ber. Bunsenges. Phys. Shem., 1982, vol. 86, pp. 112–18.

    CAS  Google Scholar 

  56. H.-G. Sockel and H. Schmalzried: Ber. Bunsenges. Phys. Shem., 1968, vol. 72 (7), p. 745.

    CAS  Google Scholar 

  57. L.B. Pfeil: J. Iron Steel Inst. (London), 1931, vol. 123, p. 237.

    Google Scholar 

  58. J.W. Greig, E. Posnjak, H.E. Merwin, and R.B. Sosman: Am. J. Sci., 1935, vol. 30 (5), p. 239.

    Article  CAS  Google Scholar 

  59. L.S. Darken and R.W. Gurry: J. Am. Ceram. Soc., 1945, vol. 67, pp. 1398–1412.

    CAS  Google Scholar 

  60. L.S. Darken and R.W. Gurry: J. Am. Ceram. Soc., 1946, vol. 68, pp. 798–816.

    CAS  Google Scholar 

  61. H.-J. Egnell: Arch. Eisenhüttenwes., 1957, vol. 28, pp. 109–15.

    Google Scholar 

  62. P. Vallet and P. Raccah: Mém. Sci. Rev. Métall., 1965, vol. 62, pp. 1–29.

    CAS  Google Scholar 

  63. R.J. Ackerman and R.W. Sandford, Jr.: USAEC Report No. ANL 7250, Chemistry (TID-4500), Argonne, IL, 1966.

  64. A.A. Lykasov, Y.S. Kuznetsov, E.I. Pil’ko, V.I. Shishkov, and V.A. Kozheurov: Russ. J. Phys. Chem., 1969, vol. 43, p. 1754.

    Google Scholar 

  65. J. Campservaux, G. Boureau, C. Picard, and P. Gerdanian: Ann. Chim., 1970, vol. 5, pp. 250–60.

    Google Scholar 

  66. B. Touzelin: Rev. Int. Hautes Temp., 1974, vol. 11, pp. 219–30.

    CAS  Google Scholar 

  67. E. Takayama and N. Kimizuka: J. Electrochem. Soc., 1980, vol. 127, pp. 970–76.

    Article  CAS  Google Scholar 

  68. Yu.D. Tretyakov and K.G. Khomyakov: Russ. J. Inorg. Chem., 1962, vol. 7 (6), pp. 628–31.

    Google Scholar 

  69. K. Kodera, I. Kusunoki, and M. Watanabe: Bull. Chem. Soc. Jpn., 1969, vol. 42, pp. 3036–37.

    Article  CAS  Google Scholar 

  70. F.J. Norton: Report No. 55-RL-1248, General Electric Research Lab., 1955.

  71. G.G. Charette and S.N. Flengas: J. Electrochem. Soc., 1968, vol. 115 (8), pp. 796–804.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degterov, S.A., Pelton, A.D., Jak, E. et al. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system. Metall Mater Trans B 32, 643–657 (2001). https://doi.org/10.1007/s11663-001-0119-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0119-2

Keywords

Navigation